Akira Ainai
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akira Ainai.
PLOS ONE | 2010
Makoto Kuroda; Harutaka Katano; Noriko Nakajima; Minoru Tobiume; Akira Ainai; Tsuyoshi Sekizuka; Hideki Hasegawa; Masato Tashiro; Yuko Sasaki; Yoshichika Arakawa; Satoru Hata; Masahide Watanabe; Tetsutaro Sata
Pandemic 2009 influenza A virus (A/H1N1/2009) has emerged globally. In this study, we performed a comprehensive detection of potential pathogens by de novo sequencing using a next-generation DNA sequencer on total RNAs extracted from an autopsy lung of a patient who died of viral pneumonia with A/H1N1/2009. Among a total of 9.4×106 40-mer short reads, more than 98% appeared to be human, while 0.85% were identified as A/H1N1/2009 (A/Nagano/RC1-L/2009(H1N1)). Suspected bacterial reads such as Streptococcus pneumoniae and other oral bacteria flora were very low at 0.005%, and a significant bacterial infection was not histologically observed. De novo assembly and read mapping analysis of A/Nagano/RC1-L/2009(H1N1) showed more than ×200 coverage on average, and revealed nucleotide heterogeneity on hemagglutinin as quasispecies, specifically at two amino acids (Gly172Glu and Gly239Asn of HA) located on the Sa and Ca2 antigenic sites, respectively. Gly239 and Asn239 on antigenic site Ca2 appeared to be minor amino acids compared with the highly distributed Asp239 in H1N1 HAs. This study demonstrated that de novo sequencing can comprehensively detect pathogens, and such in-depth investigation facilitates the identification of influenza A viral heterogeneity. To better characterize the A/H1N1/2009 virus, unbiased comprehensive techniques will be indispensable for the primary investigations of emerging infectious diseases.
Vaccine | 2012
Elly van Riet; Akira Ainai; Tadaki Suzuki; Hideki Hasegawa
The current challenge in influenza vaccine design is to induce long-lasting protection not only against the vaccine strain, but also against drifted (point mutations in the surface antigens HA or NA) and even shifted (exchange of genome segments) strains. Several immune mediators that can induce cross-protection have been described, such as CD4 T-cells, CD8 T-cells and antibodies, including IgA. However, most vaccines are now administered intramuscularly or subcutaneously and subsequently relatively little is known on the role of local, mucosal responses. Since local IgA responses have been shown to play an important role in responses to natural infection, and IgA responses in mice were shown to also be involved in cross-protection, the research on mucosal influenza vaccines is currently expanding. However, the functioning of the mucosal immune system, especially in the respiratory tract, is just beginning to be revealed. Here, the current knowledge on the induction of IgA, the role of influenza specific IgA producing B-cells in anti-influenza immunity as well as the role of humoral memory responses induced upon vaccination will be reviewed.
PLOS ONE | 2011
Ryoma Nakao; Hideki Hasegawa; Kuniyasu Ochiai; Shogo Takashiba; Akira Ainai; Makoto Ohnishi; Haruo Watanabe; Hidenobu Senpuku
We previously reported that mutation of galE in Porphyromonas gingivalis has pleiotropic effects, including a truncated lipopolysaccharide (LPS) O-antigen and deglycosylation of the outer membrane protein OMP85 homolog. In the present study, further analysis of the galE mutant revealed that it produced little or no outer membrane vesicles (OMVs). Using three mouse antisera raised against whole cells of the P. gingivalis wild type strain, we performed ELISAs to examine the reactivity of these antisera with whole cells of the wild type or the galE mutant. All three antisera had significantly lower reactivity against the galE mutant compared to wild type. OMVs, but not LPS, retained the immunodominant determinant of P. gingivalis, as determined by ELISAs (with wild type LPS or OMVs as antigen) and absorption assays. In addition, we assessed the capacity of OMVs as a vaccine antigen by intranasal immunization to BALB/c mice. Synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [Poly (I∶C)], an agonist of Toll-like receptor 3 (TLR3), was used as the mucosal adjuvant. Vaccination with OMV elicited dramatically high levels of P. gingivalis-specific IgA in nasal washes and saliva, as well as serum IgG and IgA. In conclusion, the OMVs of P. gingivalis have an important role in mucosal immunogenicity as well as in antigenicity. We propose that P. gingivalis OMV is an intriguing immunogen for development of a periodontal disease vaccine.
Vaccine | 2009
Takeshi Ichinohe; Akira Ainai; Masato Tashiro; Tetsutaro Sata; Hideki Hasegawa
The highly pathogenic avian H5N1 influenza virus has the potential to incite a global pandemic. Therefore, there is an urgent need to develop effective vaccines against these viruses. Because it is difficult to predict which strain of influenza will cause a pandemic, it is advantageous to develop vaccines that will confer cross-protective immunity against variants of the influenza virus. Recently, we reported that the Toll-like receptor 3 agonist, polyI:polyC(12)U (Ampligen), has been proven to be safe in a Phase III human trial, and is an effective mucosal adjuvant for intranasal H5N1 influenza vaccination. Intranasal administration of an Ampligen adjuvanted pre-pandemic H5N1 vaccine (NIBRG14), which was derived from the A/Vietnam/1194/2004 strain, resulted in the secretion of vaccine-specific IgA and IgG in nasal mucosa and serum, respectively, and protected mice against homologous A/Vietnam/1194/2004 and heterologous A/Hong Kong/483/97 and A/Indonesia/6/2005 viral challenge.
Journal of Virology | 2014
Kouji Sakai; Yasushi Ami; Maino Tahara; Toru Kubota; Masaki Anraku; Masako Abe; Noriko Nakajima; Tsuyoshi Sekizuka; Kazuya Shirato; Yuriko Suzaki; Akira Ainai; Yuichiro Nakatsu; Kazuhiko Kanou; Kazuya Nakamura; Tadaki Suzuki; Katsuhiro Komase; Eri Nobusawa; Katsumi Maenaka; Makoto Kuroda; Hideki Hasegawa; Yoshihiro Kawaoka; Masato Tashiro; Makoto Takeda
ABSTRACT Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. IMPORTANCE Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.
Blood | 2009
Akira Kawaguchi; Yasuko Orba; Takashi Kimura; Hidekatsu Iha; Masao Ogata; Takahiro Tsuji; Akira Ainai; Tetsutaro Sata; Takashi Okamoto; William W. Hall; Hirofumi Sawa; Hideki Hasegawa
Adult T-cell leukemia (ATL) is a T-cell malignancy caused by human T lymphotropic virus type I, and presents as an aggressive leukemia with characteristic widespread leukemic cell infiltration into visceral organs and skin. The molecular mechanisms associated with leukemic cell infiltration are poorly understood. We have used mouse models of ATL to investigate the role of chemokines in this process. Transfer of splenic lymphomatous cells from transgenic to SCID mice reproduces a leukemia and lymphoma that is histologically identical to human disease. It could be shown that lymphomatous cells exhibit specific chemotactic activity in response to stromal cell-derived factor-1alpha (SDF-1alpha). Lymphomatous cells exhibited surface expression of CXCR4, the specific receptor of SDF-1alpha. AMD3100, a CXCR4 antagonist, was found to inhibit both SDF-1alpha-induced migration and phosphorylation of extracellular signal-related kinase 1/2. Investigation of cultured cells from human ATL patients revealed identical findings. Using the SCID mouse model, it could be demonstrated that AMD3100 inhibited infiltration of lymphomatous cells into liver and lung tissues in vivo. These results demonstrate the involvement of the SDF-1alpha/CXCR4 interaction as one mechanism of leukemic cell migration and this may provide a novel target as part of combination therapy for ATL.
Journal of Medical Virology | 2010
Akira Ainai; Takeshi Ichinohe; Shinichi Tamura; Takeshi Kurata; Tetsutaro Sata; Masato Tashiro; Hideki Hasegawa
The synthetic double‐stranded RNA polyriboinocinic polyribocytidylic acid [poly(I:C)] is a potent mucosal adjuvant in mice immunized intranasally with an inactivated influenza vaccine. In an attempt, to increase the effectiveness of a nasal poly(I:C)‐combined vaccine, the effect of zymosan, a cell wall extract from Saccharomyces cervisiae was investigated, on the adjuvant activity of poly(I:C) in BALB/c mice. The addition of zymosan (10 µg) as an adjuvant in mice which were immunized intranasally with a poly(I:C) (1–5 µg)‐combined vaccine (1 µg) enhanced the ability of the mice to mount an effective immune response to a lethal dose of influenza virus, and resulted in a synergistic increase in secretory IgA and serum IgG antibody levels. To define the mechanism by which zymosan enhanced the adjuvant activity of poly(I:C), bone marrow‐derived dendritic cells (BM‐DCs) were cultured in the presence of poly(I:C) and/or zymosan. There was a synergistic increase in cytokine production (TNF‐α, IL‐6, IL‐10, and IFN‐β) in BM‐DCs, together with an increase in the expression of co‐stimulatory molecules (CD86 and CD40) in response to co‐treatment with poly(I:C) and zymosan. This synergistic effect on cytokine production was mimicked by co‐treatment with poly(I:C) and a Toll‐like receptor 2 (TLR2) ligand, which represented one of the components of zymosan. The results of the current study suggest that one of the mechanisms by which zymosan enhances the adjuvant activity of poly(I:C) is through increased cytokine production by DCs involving the synergistic activation of poly(I:C)‐induced TLR3‐ and zymosan‐induced TLR2‐mediated signaling pathways. J. Med. Virol. 82:476–484, 2010.
Journal of Medical Virology | 2010
Takeshi Ichinohe; Akira Ainai; Yasushi Ami; Noriyo Nagata; Naoko Iwata; Akira Kawaguchi; Yuriko Suzaki; Takato Odagiri; Masato Tashiro; Hidehiro Takahashi; David R. Strayer; William A. Carter; Joe Chiba; Shin-ichi Tamura; Tetsutaro Sata; Takeshi Kurata; Hideki Hasegawa
The effectiveness in cynomolgus macaques of intranasal administration of an influenza A H5N1 pre‐pandemic vaccine combined with synthetic double‐stranded RNA (polyI/polyC12U) as an adjuvant was examined. The monkeys were immunized with the adjuvant‐combined vaccine on weeks 0, 3, and 5, and challenged with the homologous virus 2 weeks after the third immunization. After the second immunization, the immunization induced vaccine‐specific salivary IgA and serum IgG antibodies, as detected by ELISA. The serum IgG antibodies present 2 weeks after the third immunization not only had high neutralizing activity against the homologous virus, they also neutralized significantly heterologous influenza A H5N1 viruses. The vaccinated animals were protected completely from the challenge infection with the homologous virus. These results suggest that intranasal immunization with the Double stranded RNA‐combined influenza A H5N1 vaccine induce mucosal IgA and serum IgG antibodies which could protect humans from homologous influenza A H5N1 viruses which have a pandemic potential. J. Med. Virol. 82:1754–1761, 2010.
Blood | 2012
Izumi Sasaki; Katsuaki Hoshino; Takahiro Sugiyama; Chihiro Yamazaki; Takahiro Yano; Akihiko Iizuka; Hiroaki Hemmi; Takashi Tanaka; Masuyoshi Saito; Masanaka Sugiyama; Yuri Fukuda; Tomokazu Ohta; Katsuaki Sato; Akira Ainai; Tadaki Suzuki; Hideki Hasegawa; Noriko Toyama-Sorimachi; Hiroshi Kohara; Takashi Nagasawa; Tsuneyasu Kaisho
Plasmacytoid dendritic cells (pDCs), originating from hematopoietic progenitor cells in the BM, are a unique dendritic cell subset that can produce large amounts of type I IFNs by signaling through the nucleic acid-sensing TLR7 and TLR9 (TLR7/9). The molecular mechanisms for pDC function and development remain largely unknown. In the present study, we focused on an Ets family transcription factor, Spi-B, that is highly expressed in pDCs. Spi-B could transactivate the type I IFN promoters in synergy with IFN regulatory factor 7 (IRF-7), which is an essential transcription factor for TLR7/9-induced type I IFN production in pDCs. Spi-B-deficient pDCs and mice showed defects in TLR7/9-induced type I IFN production. Furthermore, in Spi-B-deficient mice, BM pDCs were decreased and showed attenuated expression of a set of pDC-specific genes whereas peripheral pDCs were increased; this uneven distribution was likely because of defective retainment of mature nondividing pDCs in the BM. The expression pattern of cell-surface molecules in Spi-B-deficient mice indicated the involvement of Spi-B in pDC development. The developmental defects of pDCs in Spi-B-deficient mice were more prominent in the BM than in the peripheral lymphoid organs and were intrinsic to pDCs. We conclude that Spi-B plays critical roles in pDC function and development.
Advanced Drug Delivery Reviews | 2014
Elly van Riet; Akira Ainai; Tadaki Suzuki; Gideon Kersten; Hideki Hasegawa
Currently, several successful vaccines are available. However, for pathogens with a highly variable genetic composition, and for which serum IgG antibodies are not a useful correlate of protection, effective vaccines are yet to be developed. This is due to a lack of both the understanding of the immunological pathways leading to long-term protection and the ability to translate the available knowledge into a suitable vaccine formulation. Regarding the latter, nanoparticles can be an attractive platform for vaccine development, as they offer multiple options for improving safety and efficacy. For example, side effects might be decreased upon encapsulation of the adjuvant and the concomitant delivery of antigen and adjuvant is a very promising tool for increasing efficacy. In addition to the many promises, the use of nanoparticles as vaccine carriers should be implemented with caution: the more sophisticated a particle, the more parameters need to be controlled during production and storage.