Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akira Kawabe is active.

Publication


Featured researches published by Akira Kawabe.


Genetics | 2006

Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata.

Stephen I. Wright; John Paul Foxe; Leah DeRose-Wilson; Akira Kawabe; Mark Looseley; Brandon S. Gaut; Deborah Charlesworth

We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likelihood-based analyses of diversity and divergence do not suggest reduction of diversity in the region of suppressed recombination near the centromere of chromosome 1, except in a single population from Russia, in which the pericentromeric region may have undergone a local selective sweep or demographic process that reduced variability. We discuss various possibilities that might explain why nucleotide diversity in most A. lyrata populations is not related to recombination rate, including genic recombination hotspots, and low gene density in the low recombination rate region.


Genes & Development | 2012

Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata

Sayuri Tsukahara; Akira Kawabe; Akie Kobayashi; Tasuku Ito; Tomoyuki Aizu; Tadasu Shin-I; Atsushi Toyoda; Asao Fujiyama; Yoshiaki Tarutani; Tetsuji Kakutani

The plant genome evolves with rapid proliferation of LTR-type retrotransposons, which is associated with their clustered accumulation in gene-poor regions, such as centromeres. Despite their major role for plant genome evolution, no mobile LTR element with targeted integration into gene-poor regions has been identified in plants. Here, we report such targeted integrations de novo. We and others have previously shown that an ATCOPIA93 family retrotransposon in Arabidopsis thaliana is mobilized when the DNA methylation machinery is compromised. Although ATCOPIA93 family elements are low copy number in the wild-type A. thaliana genome, high-copy-number related elements are found in the wild-type Arabidopsis lyrata genome, and they show centromere-specific localization. To understand the mechanisms for the clustered accumulation of the A. lyrata elements directly, we introduced one of them, named Tal1 (Transposon of Arabidopsis lyrata 1), into A. thaliana by transformation. The introduced Tal1 was retrotransposed in A. thaliana, and most of the retrotransposed copies were found in centromeric repeats of A. thaliana, suggesting targeted integration. The targeted integration is especially surprising because the centromeric repeat sequences differ considerably between A. lyrata and A. thaliana. Our results revealed unexpectedly dynamic controls for evolution of the transposon-rich heterochromatic regions.


Genetics | 2006

Centromere Locations and Associated Chromosome Rearrangements in Arabidopsis lyrata and A. thaliana

Akira Kawabe; Bengt Hansson; Jenny Hagenblad; Alan Forrest; Deborah Charlesworth

We analyzed linkage and chromosomal positions of genes in A. lyrata ssp. petraea that are located near the centromere (CEN) regions of A. thaliana, using at least two genes from the short and long arms of each chromosome. In our map, genes from all 10 A. thaliana chromosome arms are also tightly linked in A. lyrata. Genes from the regions on the two sides of CEN5 have distant map localizations in A. lyrata (genes on the A. thaliana short-arm genes are on linkage group AL6, and long-arm genes are on AL7), but genes from the other four A. thaliana centromere regions remain closely linked in A. lyrata. The observation of complete linkage between short- and long-arm centromere genes, but not between genes in other genome regions that are separated by similar physical distances, suggests that crossing-over frequencies near the A. lyrata ssp. petraea centromere regions are low, as in A. thaliana. Thus, the centromere positions appear to be conserved between A. thaliana and A. lyrata, even though three centromeres have been lost in A. thaliana, and the core satellite sequences in the two species are very different. We can now definitively identify the three centromeres that were eliminated in the fusions that formed the A. thaliana chromosomes. However, we cannot tell whether genes were lost along with these centromeres, because such genes are absent from the A. thaliana genome, which is the sole source of markers for our mapping.


The EMBO Journal | 2013

Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor

Yu Fu; Akira Kawabe; Mathilde Etcheverry; Tasuku Ito; Atsushi Toyoda; Asao Fujiyama; Vincent Colot; Yoshiaki Tarutani; Tetsuji Kakutani

Transposable elements (TEs) have a major impact on genome evolution, but they are potentially deleterious, and most of them are silenced by epigenetic mechanisms, such as DNA methylation. Here, we report the characterization of a TE encoding an activity to counteract epigenetic silencing by the host. In Arabidopsis thaliana, we identified a mobile copy of the Mutator‐like element (MULE) with degenerated terminal inverted repeats (TIRs). This TE, named Hiun (Hi), is silent in wild‐type plants, but it transposes when DNA methylation is abolished. When a Hi transgene was introduced into the wild‐type background, it induced excision of the endogenous Hi copy, suggesting that Hi is the autonomously mobile copy. In addition, the transgene induced loss of DNA methylation and transcriptional activation of the endogenous Hi. Most importantly, the trans‐activation of Hi depends on a Hi‐encoded protein different from the conserved transposase. Proteins related to this anti‐silencing factor, which we named VANC, are widespread in the non‐TIR MULEs and may have contributed to the recent success of these TEs in natural Arabidopsis populations.


Gene | 2013

Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae

Hidetaka Ito; Takanori Yoshida; Sayuri Tsukahara; Akira Kawabe

A Ty1/Copia-like retrotransposon, ONSEN, is activated by heat stress in Arabidopsis thaliana, and its de novo integrations that were observed preferentially within genes implies its regulation of neighboring genes. Here we show that ONSEN related copies were found in most species of Brassicaceae, forming a cluster with each species in phylogenetic tree. Most copies were localized close to genes in Arabidopsis lyrata and Brassica rapa, suggesting conserved integration specificity of ONSEN family into genic or open chromatin. In addition, we found heat-induced transcriptional activation of ONSEN family in several species of Brassicaceae. These results suggest that ONSEN has conserved transcriptional activation promoted by environmental heat stress in some Brassicaceae species.


Genetics | 2008

High DNA Sequence Diversity in Pericentromeric Genes of the Plant Arabidopsis lyrata

Akira Kawabe; Alan Forrest; Stephen I. Wright; Deborah Charlesworth

Differences in neutral diversity at different loci are predicted to arise due to differences in mutation rates and from the “hitchhiking” effects of natural selection. Consistent with hitchhiking models, Drosophila melanogaster chromosome regions with very low recombination have unusually low nucleotide diversity. We compared levels of diversity from five pericentromeric regions with regions of normal recombination in Arabidopsis lyrata, an outcrossing close relative of the highly selfing A. thaliana. In contrast with the accepted theoretical prediction, and the pattern in Drosophila, we found generally high diversity in pericentromeric genes, which is consistent with the observation in A. thaliana. Our data rule out balancing selection in the pericentromeric regions, suggesting that hitchhiking is more strongly reducing diversity in the chromosome arms than the pericentromere regions.


DNA Research | 2014

Patterns of Genomic Integration of Nuclear Chloroplast DNA Fragments in Plant Species

Takanori Yoshida; Hazuka Y. Furihata; Akira Kawabe

The transfer of organelle DNA fragments to the nuclear genome is frequently observed in eukaryotes. These transfers are thought to play an important role in gene and genome evolution of eukaryotes. In plants, such transfers occur from plastid to nuclear [nuclear plastid DNAs (NUPTs)] and mitochondrial to nuclear (nuclear mitochondrial DNAs) genomes. The amount and genomic organization of organelle DNA fragments have been studied in model plant species, such as Arabidopsis thaliana and rice. At present, publicly available genomic data can be used to conduct such studies in non-model plants. In this study, we analysed the amount and genomic organization of NUPTs in 17 plant species for which genome sequences are available. The amount and distribution of NUPTs varied among the species. We also estimated the distribution of NUPTs according to the time of integration (relative age) by conducting sequence similarity analysis between NUPTs and the plastid genome. The age distributions suggested that the present genomic constitutions of NUPTs could be explained by the combination of the rapidly eliminated deleterious parts and few but constantly existing less deleterious parts.


PLOS ONE | 2013

Importance of gene duplication in the evolution of genomic imprinting revealed by molecular evolutionary analysis of the type I MADS-box gene family in Arabidopsis species.

Takanori Yoshida; Akira Kawabe

The pattern of molecular evolution of imprinted genes is controversial and the entire picture is still to be unveiled. Recently, a relationship between the formation of imprinted genes and gene duplication was reported in genome-wide survey of imprinted genes in Arabidopsis thaliana. Because gene duplications influence the molecular evolution of the duplicated gene family, it is necessary to investigate both the pattern of molecular evolution and the possible relationship between gene duplication and genomic imprinting for a better understanding of evolutionary aspects of imprinted genes. In this study, we investigated the evolutionary changes of type I MADS-box genes that include imprinted genes by using relative species of Arabidopsis thaliana (two subspecies of A . lyrata and three subspecies of A . halleri ). A duplicated gene family enables us to compare DNA sequences between imprinted genes and its homologs. We found an increased number of gene duplications within species in clades containing the imprinted genes, further supporting the hypothesis that local gene duplication is one of the driving forces for the formation of imprinted genes. Moreover, data obtained by phylogenetic analysis suggested “rapid evolution” of not only imprinted genes but also its closely related orthologous genes, which implies the effect of gene duplication on molecular evolution of imprinted genes.


Australian Journal of Botany | 2015

Metal accumulation by Arabidopsis halleri subsp. gemmifera at a limestone mining site

Aki Kosugi; Jun Tamaru; Kazumi Gotou; Hazuka Y. Furihata; Akifumi Shimizu; Akira Kawabe; Emiko Harada

Arabidopsis halleri subsp. gemmifera, a close wild relative of A. thaliana in eastern Asia, is an important model species of Brassicaceae used to study cadmium (Cd) and zinc (Zn) tolerance and hyperaccumulation in plants. To investigate the effects of soil factors on metal accumulation in this plant, we collected plants and rhizosphere soil samples from a limestone mining site on Mount Ibuki, and compared them with those collected from non-calcareous soil in Japan. Irrespective of the sampling site, all the plants efficiently accumulated Cd in shoot tissues. The plants growing on non-calcareous soil also accumulated Zn in shoot tissues, but shoot Zn concentration in plants growing on calcareous soils was below the level required for hyperaccumulators. The pH of calcareous soil samples was between 7.68 and 8.21. Total Zn contents were similar in calcareous and non-calcareous soils, but the amounts of Zn extractable by 0.1 M HCl were lower in calcareous than in non-calcareous soil. These results indicate that the properties of calcareous soil affect metal accumulation in plants.


Nature Communications | 2017

Evolution of sequence-specific anti-silencing systems in Arabidopsis

Aoi Hosaka; Raku Saito; Kazuya Takashima; Taku Sasaki; Yu Fu; Akira Kawabe; Tasuku Ito; Atsushi Toyoda; Asao Fujiyama; Yoshiaki Tarutani; Tetsuji Kakutani

The arms race between parasitic sequences and their hosts is a major driving force for evolution of gene control systems. Since transposable elements (TEs) are potentially deleterious, eukaryotes silence them by epigenetic mechanisms such as DNA methylation. Little is known about how TEs counteract silencing to propagate during evolution. Here, we report behavior of sequence-specific anti-silencing proteins used by Arabidopsis TEs and evolution of those proteins and their target sequences. We show that VANC, a TE-encoded anti-silencing protein, induces extensive DNA methylation loss throughout TEs. Related VANC proteins have evolved to hypomethylate TEs of completely different spectra. Targets for VANC proteins often form tandem repeats, which vary considerably between related TEs. We propose that evolution of VANC proteins and their targets allow propagation of TEs while causing minimal host damage. Our findings provide insight into the evolutionary dynamics of these apparently “selfish” sequences. They also provide potential tools to edit epigenomes in a sequence-specific manner.Eukaryotes often silence transposable elements (TEs) via DNA methylation. Here, the authors show that evolution of VANC, an Arabidopsis anti-silencing factor, and its target motifs allows sequence-specific demethylation, suggesting a way TEs can proliferate while minimizing damage to the host genome.

Collaboration


Dive into the Akira Kawabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Forrest

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Asao Fujiyama

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Toyoda

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge