Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akira Miyazaki is active.

Publication


Featured researches published by Akira Miyazaki.


Diabetologia | 2011

Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice.

Masaharu Nagashima; Takuya Watanabe; Michishige Terasaki; Masako Tomoyasu; Kyoko Nohtomi; Joo-ri Kim-Kaneyama; Akira Miyazaki; Tsutomu Hirano

Aims/hypothesisSeveral lines of evidence suggest that incretin-based therapies suppress the development of cardiovascular disease in type 2 diabetes. We investigated the possibility that glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) can prevent the development of atherosclerosis in Apoe−/− mice.MethodsApoe−/− mice (17xa0weeks old) were administered GLP-1(7–36)amide, GLP-1(9–36)amide, GIP(1–42) or GIP(3–42) for 4xa0weeks. Aortic atherosclerosis, oxidised LDL-induced foam cell formation and related gene expression in exudate peritoneal macrophages were determined.ResultsAdministration of GLP-1(7–36)amide or GIP(1–42) significantly suppressed atherosclerotic lesions and macrophage infiltration in the aortic wall, compared with vehicle controls. These effects were cancelled by co-infusion with specific antagonists for GLP-1 and GIP receptors, namely exendin(9–39) or Pro3(GIP). The anti-atherosclerotic effects of GLP-1(7–36)amide and GIP(1–42) were associated with significant decreases in foam cell formation and downregulation of CD36 and acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in macrophages. GLP-1 and GIP receptors were both detected in Apoe−/− mouse macrophages. Ex vivo incubation of macrophages with GLP-1(7–36)amide or GIP(1–42) for 48xa0h significantly suppressed foam cell formation. This effect was wholly abolished in macrophages pretreated with exendin(9−39) or (Pro3)GIP, or with an adenylate cyclase inhibitor, MDL12,330A, and was mimicked by incubation with an adenylate cyclase activator, forskolin. The inactive forms, GLP-1(9–36)amide and GIP(3–42), had no effects on atherosclerosis and macrophage foam cell formation.Conclusions/interpretationOur study is the first to demonstrate that active forms of GLP-1 and GIP exert anti-atherogenic effects by suppressing macrophage foam cell formation via their own receptors, followed by cAMP activation. Molecular mechanisms underlying these effects are associated with the downregulation of CD36 and ACAT-1 by incretins.


Circulation | 2011

m-Calpain Induction in Vascular Endothelial Cells on Human and Mouse Atheromas and Its Roles in VE-Cadherin Disorganization and Atherosclerosis

Takuro Miyazaki; Yoshitaka Taketomi; Masafumi Takimoto; Xiao-Feng Lei; Shigeko Arita; Joo-ri Kim-Kaneyama; Satoru Arata; Hisayuki Ohata; Hidekazu Ota; Makoto Murakami; Akira Miyazaki

Background— Although dysfunction of VE-cadherin–mediated adherence junctions in vascular endothelial cells (ECs) is thought to be one of the initial steps of atherosclerosis, little is known regarding how VE-cadherin is disrupted during atherogenic development. This study focused on the role of calpain, an intracellular cysteine protease, in the proteolytic disorganization of VE-cadherin and subsequent progression of atherosclerosis. Methods and Results— Increased expression of m-calpain was observed in aortic ECs in atherosclerotic lesions in humans and low-density lipoprotein receptor–deficient (ldlr−/−) mice. Furthermore, proteolytic disorganization of VE-cadherin was shown in aortic ECs in ldlr−/− and apolipoprotein E–deficient (apoE−/−) mice. Long-term administration of calpain inhibitors into these mice attenuated atherosclerotic lesion development and proinflammatory responses, as well as VE-cadherin disorganization, without normalization of plasma lipid profiles. Furthermore, in vivo transfection of m-calpain siRNA to ldlr−/− mice prevented disorganization of VE-cadherin and proatherogenic hyperpermeability in aortic ECs. Treatment of cultured ECs with oxidized LDL, lysophosphatidylcholine, or LDL pretreated with secreted phospholipase A2 led to the induction of m-calpain but not of &mgr;-calpain, thereby eliciting selective m-calpain overactivation. These data suggest that lysophosphatidylcholine-induced m-calpain directly cleaves a juxtamembrane region of VE-cadherin, resulting in dissociation of &bgr;-catenin from the VE-cadherin complex, disorganization of adherence junctions, and hyperpermeability in ECs. Conclusions— Subtype-selective induction of m-calpain in aortic ECs during atherosclerotic progression is associated with proteolytic disorganization of VE-cadherin and proatherogenic hyperpermeability in cells. Thus, a strategy to selectively inhibit m-calpain may be useful for the therapeutic treatment of patients with atherosclerosis.


Circulation Research | 2009

Preventive Effects of Heregulin-β1 on Macrophage Foam Cell Formation and Atherosclerosis

Gang Xu; Takuya Watanabe; Yoshitaka Iso; Shinji Koba; Tetsuo Sakai; Masaharu Nagashima; Shigeko Arita; Shigeki Hongo; Hidekazu Ota; Youichi Kobayashi; Akira Miyazaki; Tsutomu Hirano

Rationale: Human heregulins, neuregulin-1 type I polypeptides that activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, are expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter (ABC)A1. Objective: The present study clarified the roles of heregulins in macrophage foam cell formation and atherosclerosis. Methods and Results: Plasma heregulin-&bgr;1 levels were significantly decreased in 31 patients with acute coronary syndrome and 33 patients with effort angina pectoris compared with 34 patients with mild hypertension and 40 healthy volunteers (1.3±0.3, 2.0±0.4 versus 7.6±1.4, 8.2±1.2 ng/mL; P<0.01). Among all patients with acute coronary syndrome and effort angina pectoris, plasma heregulin-&bgr;1 levels were further decreased in accordance with the severity of coronary artery lesions. Expression of heregulin-&bgr;1 was observed at trace levels in intracoronary atherothrombosis obtained by aspiration thrombectomy from acute coronary syndrome patients. Heregulin-&bgr;1, but not heregulin-&agr;, significantly reduced acetylated low-density lipoprotein–induced cholesterol ester accumulation in primary cultured human monocyte-derived macrophages by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-&bgr;1 significantly decreased endocytic uptake of [125I]acetylated low-density lipoprotein and ACAT activity, and increased cholesterol efflux to apolipoprotein (Apo)A-I from human macrophages. Chronic infusion of heregulin-&bgr;1 into ApoE−/− mice significantly suppressed the development of atherosclerotic lesions. Conclusions: This study provided the first evidence that heregulin-&bgr;1 inhibits atherogenesis and suppresses macrophage foam cell formation via SR-A and ACAT1 downregulation and ABCA1 upregulation.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF-κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro.

Takayuki Koya; Takuro Miyazaki; Takuya Watanabe; Masayoshi Shichiri; Takashi Atsumi; Joo-ri Kim-Kaneyama; Akira Miyazaki

The bioactive peptide salusin-β is highly expressed in human atheromas; additionally, infusion of antiserum against salusin-β suppresses the development of atherosclerosis in atherogenic mice. This study examined the roles of salusin-β in vascular inflammation during atherogenesis. Infusion of antiserum against salusin-β attenuated the induction of VCAM-1, monocyte chemoattractant protein (MCP)-1, and IL-1β and as well as nuclear translocation of NF-κB in aortic endothelial cells (ECs) of LDL receptor-deficient mice, which led to the prevention of monocyte adhesion to aortic ECs. In vitro experiments indicated that salusin-β directly enhances the expression levels of proinflammatory molecules, including VCAM-1, MCP-1, IL-1β, and NADPH oxidase 2, as well as THP-1 monocyte adhesion to cultured human umbilical vein ECs (HUVECs). Both salusin-β-induced VCAM-1 induction and monocyte/HUVEC adhesion were suppressed by pharmacological inhibitors of NF-κB, e.g., Bay 11-7682 and curcumin. Furthermore, the VCAM-1 induction was significantly prevented by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, whereas it was accelerated by the ERK inhibitor, U-0126. Treatment of HUVECs with salusin-β, but not with salusin-α, accelerated oxidative stress and nuclear translocation of NF-κB as well as phosphorylation and degradation of IκB-α, an endogenous inhibitor of NF-κB. Thus, salusin-β enhanced monocyte adhesion to vascular ECs through NF-κB-mediated inflammatory responses in ECs, which can be modified by PI3K or ERK signals. These findings are suggestive of a novel role of salusin-β in atherogenesis.


Current Medicinal Chemistry | 2009

Human urotensin II promotes hypertension and atherosclerotic cardiovascular diseases.

Takuya Watanabe; Shigeko Arita; Yuji Shiraishi; Toshiaki Suguro; Tetsuo Sakai; Shigeki Hongo; Akira Miyazaki

Human urotensin II (U-II), the most potent vasoconstrictor undecapeptide identified to date, and its receptor (UT) are involved in the pathogenesis of systemic and pulmonary hypertension. Here, we review recent advances in our understanding of the pathophysiology of U-II with particular reference to its role in atherosclerotic cardiovascular diseases. Single-nucleotide polymorphisms of U-II gene (S89N) are associated with onset of essential hypertension, type II diabetes mellitus, and insulin resistance in the Asian population. Plasma U-II levels are elevated in patients with vascular endothelial dysfunction-related diseases such as essential hypertension, diabetes mellitus, atherosclerosis, ischemic heart disease, and heart failure. Chronic infusion of U-II enhances atherosclerotic lesions in the aorta in apolipoprotein E-knockout mice. In human atherosclerotic plaques from the aorta and coronary and carotid arteries, U-II is expressed at high levels in endothelial cells (ECs) and lymphocytes, whereas UT is expressed at high levels in vascular smooth muscle cells (VSMCs), ECs, monocytes, and macrophages. U-II stimulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in human ECs as chemoattractant for monocytes, and accelerates foam cell formation by up-regulation of acyl-coenzyme A:cholesterol acyltransferase-1 in human monocyte-derived macrophages. U-II produces reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate oxidase activation in human VSMCs, and stimulates VSMC proliferation with synergistic effects when combined with ROS, oxidized LDL, and serotonin. Clinical studies demonstrated increased plasma U-II levels in accordance with the severity of carotid atherosclerosis in patients with essential hypertension and that of coronary artery lesions in patients with ischemic heart disease. Here, we summarize the key roles of U-II in progression of hypertension and atherosclerotic cardiovascular diseases.


Journal of Hypertension | 2008

Chronic urotensin II infusion enhances macrophage foam cell formation and atherosclerosis in apolipoprotein E-knockout mice.

Yuji Shiraishi; Takuya Watanabe; Toshiaki Suguro; Masaharu Nagashima; Rina Kato; Shigeki Hongo; Hiroyuki Itabe; Akira Miyazaki; Tsutomu Hirano; Mitsuru Adachi

Objective Our recent studies have indicated that urotensin II, the most potent vasoconstrictor peptide identified to date, potentiates human macrophage foam cell formation and vascular smooth muscle cell proliferation, and its levels are increased in the plasma of hypertensive patients with carotid atherosclerotic plaques. In the present study, we investigated the enhancing effect of urotensin II on atherosclerosis in apolipoprotein E-knockout mice and its suppression by 4-aminoquinoline, an urotensin II receptor-selective antagonist. Methods Urotensin II, urotensin II + 4-aminoquinoline, or vehicle was infused for 4 weeks through an osmotic mini-pump into 9-week-old apolipoprotein E-knockout mice on a high-fat diet. Aortic atherosclerosis and foam cell formation in exudate peritoneal macrophages were examined. Results Atherosclerotic lesions as well as plasma levels of urotensin II, reactive oxygen species, and oxidized low-density lipoprotein and oxidized low-density lipoprotein-induced foam cell formation were significantly greater in urotensin II-infused mice than vehicle-infused controls. Western blotting analysis showed increased expression of scavenger receptors (CD36 and scavenger receptor class A) and acyl-CoA:cholesterol acyltransferase-1 in these macrophages. Increases in these parameters were significantly reduced by addition of 4-aminoquinoline. In apolipoprotein E-knockout mice even without urotensin II infusion, the treatment with 4-aminoquinoline for 8 weeks significantly prevented the development of atherosclerotic lesions. Conclusion Our results provide the first evidence that increased plasma urotensin II level stimulates oxidized low-density lipoprotein and reactive oxygen species production and macrophage foam cell formation via increased expression of CD36, scavenger receptor class A, and acyl-CoA:cholesterol acyltransferase-1, contributing to the development of atherosclerosis in apolipoprotein E-deficient mice. Urotensin II receptor antagonism may be a promising therapeutic strategy against atherosclerosis.


Journal of Molecular and Cellular Cardiology | 2011

Hic-5 deficiency enhances mechanosensitive apoptosis and modulates vascular remodeling

Joo-ri Kim-Kaneyama; Naoki Takeda; Asami Sasai; Akira Miyazaki; Masataka Sata; Takahiro Hirabayashi; Motoko Shibanuma; Gen Yamada; Kiyoshi Nose

Forces associated with blood flow are crucial not only for blood vessel development but also for regulation of vascular pathology. Although there have been many studies characterizing the responses to mechanical stimuli, molecular mechanisms linking biological responses to mechanical forces remain unclear. Hic-5 (hydrogen peroxide-inducible clone-5) is a focal adhesion adaptor protein proposed as a candidate for a mediator of mechanotransduction. In the present study, we generated Hic-5-deficient mice by targeted mutation. Mice lacking Hic-5 are viable and fertile, and show no obvious histological abnormalities including vasculature. However, after wire injury of the femoral artery in Hic-5 deficient mice, histological recovery of arterial media was delayed due to enhanced apoptosis of vascular wall cells, whereas neointima formation was enhanced. Stretch-induced apoptosis was enhanced in cultured vascular smooth muscle cells (vascular SMCs) from Hic-5 deficient mice. Mechanical stress also induced the alteration of intracellular distribution of vinculin from focal adhesions to the whole cytoplasm in SMCs. Immunoelectron microscopic study of vascular SMCs from a wire-injured artery demonstrated that vinculin was dispersed in the nucleus and the cytoplasm in Hic-5-deficient mice whereas vinculin was localized mainly in the sub-plasma membrane region in wild type mice. Our findings indicate that Hic-5 may serve as a key regulator in mechanosensitive vascular remodeling.


Clinical Science | 2008

Increased plasma urotensin-II levels are associated with diabetic retinopathy and carotid atherosclerosis in Type 2 diabetes.

Toshiaki Suguro; Takuya Watanabe; Syuusuke Kodate; Gang Xu; Tsutomu Hirano; Mitsuru Adachi; Akira Miyazaki

Human U-II (urotensin-II), the most potent vasoconstrictor peptide identified to date, is associated with cardiovascular disease. A single nucleotide polymorphism (S89N) in the gene encoding U-II (UTS2) is associated with the onset of Type 2 diabetes and insulin resistance in the Japanese population. In the present study, we have demonstrated a relationship between plasma U-II levels and the progression of diabetic retinopathy and vascular complications in patients with Type 2 diabetes. Eye fundus, IMT (intima-media thickness) and plaque score in the carotid artery, BP (blood pressure), FPG (fasting plasma glucose), HbA(1c) (glycated haemoglobin), U-II, angiogenesis-stimulating factors, such as VEGF (vascular endothelial growth factor) and heregulin-beta(1), and lipid profiles were determined in 64 patients with Type 2 diabetes and 24 non-diabetic controls. FPG, HbA(1c) and VEGF levels were significantly higher in patients with Type 2 diabetes than in non-diabetic controls. Diabetes duration, insufficient glycaemic and BP control, plasma U-II levels, IMT, plaque score and nephropathy grade increased significantly across the subjects as follows: non-diabetic controls, patients with Type 2 diabetes without retinopathy (group N), patients with Type 2 diabetes with simple (background) retinopathy (group A) and patients with Type 2 diabetes with pre-proliferative and proliferative retinopathy (group B). The prevalence of obesity and smoking, age, low-density lipoprotein, triacylglycerols (triglycerides) and heregulin-beta(1) were not significantly different among the four groups. In all subjects, U-II levels were significantly positively correlated with IMT, FPG, and systolic and diastolic BP. Multiple logistic regression analysis revealed that, of the above parameters, U-II levels alone had a significantly independent association with diabetic retinopathy. In conclusion, the results of the present study provide the first evidence that increased plasma U-II levels may be associated with the progression of diabetic retinopathy and carotid atherosclerosis in patients with Type 2 diabetes.


Atherosclerosis | 2010

A selective ACAT-1 inhibitor, K-604, stimulates collagen production in cultured smooth muscle cells and alters plaque phenotype in apolipoprotein E-knockout mice.

Yasunobu Yoshinaka; Haruki Shibata; Hideyuki Kobayashi; Hiroki Kuriyama; Kimiyuki Shibuya; Sohei Tanabe; Takuya Watanabe; Akira Miyazaki

Acyl-coenzyme A:cholesterol O-acyltransferase-1 (ACAT-1) plays an essential role in macrophage foam cell formation and progression of atherosclerosis. We developed a potent and selective ACAT-1 inhibitor, K-604, and tested its effects in apoE-knockout mice. Administration of K-604 to 8-week-old apoE-knockout mice for 12 weeks at a dose of 60 mg/kg/day significantly reduced macrophage-positive area and increased collagen-positive area in atherosclerotic plaques in the aorta without affecting plasma cholesterol levels or lesion areas, indicating direct plaque-modulating effects of K-604 on vascular walls independent of plasma cholesterol levels. Pactimibe, a nonselective inhibitor of ACAT-1 and ACAT-2, reduced plasma cholesterol levels but did not affect macrophage- or collagen-positive areas. The size of macrophages and cholesteryl ester contents in the aorta were reduced by K-604. Exposure of cultured human aortic smooth muscle cells to K-604 resulted in increased procollagen type 1 contents in the culture supernatant and increased procollagen type 1 mRNA levels. Procollagen production was unaffected by pactimibe even at a concentration that inhibited cholesterol esterification to the basal level. Thus, the plaque-modulating effects of K-604 can be explained by stimulation of procollagen production independent of ACAT inhibition in addition to potent inhibition of macrophage ACAT-1.


Circulation Research | 2015

Calpastatin Counteracts Pathological Angiogenesis by Inhibiting Suppressor of Cytokine Signaling 3 Degradation in Vascular Endothelial Cells

Takuro Miyazaki; Yoshitaka Taketomi; Yuta Saito; Tomohiko Hosono; Xiao-Feng Lei; Joo-ri Kim-Kaneyama; Satoru Arata; Haruo Takahashi; Makoto Murakami; Akira Miyazaki

RATIONALEnJanus kinase/signal transducer and activator of transcription (JAK/STAT) signals and their endogenous inhibitor, suppressor of cytokine signaling 3 (SOCS3), in vascular endothelial cells (ECs) reportedly dominate the pathological angiogenesis. However, how these inflammatory signals are potentiated during pathological angiogenesis has not been fully elucidated. We suspected that an intracellular protease calpain, which composes the multifunctional proteolytic systems together with its endogenous inhibitor calpastatin (CAST), contributes to the JAK/STAT regulations.nnnOBJECTIVEnTo specify the effect of EC calpain/CAST systems on JAK/STAT signals and their relationship with pathological angiogenesis.nnnMETHODS AND RESULTSnThe loss of CAST, which is ensured by several growth factor classes, was detectable in neovessels in murine allograft tumors, some human malignant tissues, and oxygen-induced retinopathy lesions in mice. EC-specific transgenic introduction of CAST caused downregulation of JAK/STAT signals, upregulation of SOCS3 expression, and depletion of vascular endothelial growth factor (VEGF)-C, thereby counteracting unstable pathological neovessels and disease progression in tumors and oxygen-induced retinopathy lesions in mice. Neutralizing antibody against VEGF-C ameliorated pathological angiogenesis in oxygen-induced retinopathy lesions. Small interfering RNA-based silencing of endogenous CAST in cultured ECs facilitated μ-calpain-induced proteolytic degradation of SOCS3, leading to VEGF-C production through amplified interleukin-6-driven STAT3 signals. Interleukin-6-induced angiogenic tube formation in cultured ECs was accelerated by CAST silencing, which is suppressible by pharmacological inhibition of JAK/STAT signals, antibody-based blockage of VEGF-C, and transfection of calpain-resistant SOCS3, whereas transfection of wild-type SOCS3 exhibited modest angiostatic effects.nnnCONCLUSIONSnLoss of CAST in angiogenic ECs facilitates μ-calpain-induced SOCS3 degradation, which amplifies pathological angiogenesis through interleukin-6/STAT3/VEGF-C axis.

Collaboration


Dive into the Akira Miyazaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takuya Watanabe

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge