Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiyoshi Komuro is active.

Publication


Featured researches published by Akiyoshi Komuro.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling

Mitsunobu R. Kano; Younsoo Bae; Caname Iwata; Yasuyuki Morishita; Masakazu Yashiro; Masako Oka; Tomoko Fujii; Akiyoshi Komuro; Kunihiko Kiyono; Michio Kaminishi; Kosei Hirakawa; Yasuyoshi Ouchi; Nobuhiro Nishiyama; Kazunori Kataoka; Kohei Miyazono

Transforming growth factor (TGF)-β plays a pivotal role in regulation of progression of cancer through effects on tumor microenvironment as well as on cancer cells. TGF-β inhibitors have recently been shown to prevent the growth and metastasis of certain cancers. However, there may be adverse effects caused by TGF-β signaling inhibition, including the induction of cancers by the repression of TGF-β-mediated growth inhibition. Here, we present an application of a short-acting, small-molecule TGF-β type I receptor (TβR-I) inhibitor at a low dose in treating several experimental intractable solid tumors, including pancreatic adenocarcinoma and diffuse-type gastric cancer, characterized by hypovascularity and thick fibrosis in tumor microenvironments. Low-dose TβR-I inhibitor altered neither TGF-β signaling in cancer cells nor the amount of fibrotic components. However, it decreased pericyte coverage of the endothelium without reducing endothelial area specifically in tumor neovasculature and promoted accumulation of macromolecules, including anticancer nanocarriers, in the tumors. Compared with the absence of TβR-I inhibitor, anticancer nanocarriers exhibited potent growth-inhibitory effects on these cancers in the presence of TβR-I inhibitor. The use of TβR-I inhibitor combined with nanocarriers may thus be of significant clinical and practical importance in treating intractable solid cancers.


The EMBO Journal | 2003

Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7

Daizo Koinuma; Masahiko Shinozaki; Akiyoshi Komuro; Kouichiro Goto; Masao Saitoh; Aki Hanyu; Masahito Ebina; Toshihiro Nukiwa; Keiji Miyazawa; Takeshi Imamura; Kohei Miyazono

Arkadia was originally identified as a protein that enhances signalling activity of Nodal and induces mammalian nodes during early embryogenesis; however, the mechanisms by which Arkadia affects transforming growth factor‐β (TGF‐β) superfamily signalling have not been determined. Here we show that Arkadia is widely expressed in mammalian tissues, and that it enhances both TGF‐β and bone morphogenetic protein (BMP) signalling. Arkadia physically interacts with inhibitory Smad, Smad7, and induces its poly‐ubiquitination and degradation. In contrast to Smurf1, which interacts with TGF‐β receptor complexes through Smad7 and degrades them, Arkadia fails to associate with TGF‐β receptors. In contrast to Smad7, expression of Arkadia is down‐regulated by TGF‐β. Silencing of the Arkadia gene resulted in repression of transcriptional activities induced by TGF‐β and BMP, and accumulation of the Smad7 protein. Arkadia may thus play an important role as an amplifier of TGF‐β superfamily signalling under both physiological and pathological conditions.


Oncogene | 2004

Negative regulation of transforming growth factor- β (TGF- β ) signaling by WW domain-containing protein 1 (WWP1)

Akiyoshi Komuro; Takeshi Imamura; Masao Saitoh; Yoko Yoshida; Takao Yamori; Kohei Miyazono; Keiji Miyazawa

Smad7 negatively regulates transforming growth factor (TGF)-β superfamily signaling by binding to activated type I receptors, thereby preventing the phosphorylation of receptor-regulated Smads (R-Smads), as well as by recruiting HECT-type E3 ubiquitin ligases to degrade type I receptors through a ubiquitin-dependent mechanism. To elucidate the regulatory mechanisms of TGF-β signaling, we searched for novel members of proteins that interact with Smad7 using a yeast two-hybrid system. One of the proteins identified was the WW domain-containing protein 1 (WWP1) that is structurally related to Smad ubiquitin regulatory factors (Smurfs), E3 ubiquitin ligases for Smads and TGF-β superfamily receptors. Using a TGF-β-responsive reporter in mammalian cells, we found that WWP1 inhibited transcriptional activities induced by TGF-β. Similar to Smurfs, WWP1 associated with Smad7 and induced its nuclear export, and enhanced binding of Smad7 to TGF-β type I receptor to cause ubiquitination and degradation of the receptor. Consistent with these results, WWP1 inhibited phosphorylation of Smad2 induced by TGF-β. WWP1 thus negatively regulates TGF-β signaling in cooperation with Smad7. However, unlike Smurfs, WWP1 failed to ubiquitinate R-Smads and SnoN. Importantly, WWP1 and Smurfs were expressed in distinct patterns in human tissues and carcinoma cell lines, suggesting unique pathophysiological roles of WWP1 and Smurfs.


Biochemical Journal | 2005

NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor

Go Kuratomi; Akiyoshi Komuro; Kouichiro Goto; Masahiko Shinozaki; Keiji Miyazawa; Kohei Miyazono; Takeshi Imamura

Inhibitory Smad, Smad7, is a potent inhibitor of TGF-β (transforming growth factor-β) superfamily signalling. By binding to activated type I receptors, it prevents the activation of R-Smads (receptor-regulated Smads). To identify new components of the Smad pathway, we performed yeast two-hybrid screening using Smad7 as bait, and identified NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) as a direct binding partner of Smad7. NEDD4-2 is structurally similar to Smurfs (Smad ubiquitin regulatory factors) 1 and 2, which were identified previously as E3 ubiquitin ligases for R-Smads and TGF-β superfamily receptors. NEDD4-2 functions like Smurfs 1 and 2 in that it associates with TGF-β type I receptor via Smad7, and induces its ubiquitin-dependent degradation. Moreover, NEDD4-2 bound to TGF-β-specific R-Smads, Smads 2 and 3, in a ligand-dependent manner, and induced degradation of Smad2, but not Smad3. However, in contrast with Smurf2, NEDD4-2 failed to induce ubiquitination of SnoN (Ski-related novel protein N), although NEDD4-2 bound to SnoN via Smad2 more strongly than Smurf2. We showed further that overexpressed NEDD4-2 prevents transcriptional activity induced by TGF-β and BMP, whereas silencing of the NEDD4-2 gene by siRNA (small interfering RNA) resulted in enhancement of the responsiveness to TGF-β superfamily cytokines. These data suggest that NEDD4-2 is a member of the Smurf-like C2-WW-HECT (WW is Trp-Trp and HECT is homologous to the E6-accessory protein) type E3 ubiquitin ligases, which negatively regulate TGF-β superfamily signalling through similar, but not identical, mechanisms to those used by Smurfs.


Blood | 2008

Inhibition of endogenous TGF-β signaling enhances lymphangiogenesis

Masako Oka; Caname Iwata; Hiroshi Suzuki; Kunihiko Kiyono; Yasuyuki Morishita; Tetsuro Watabe; Akiyoshi Komuro; Mitsunobu R. Kano; Kohei Miyazono

Lymphangiogenesis is induced by various growth factors, including VEGF-C. Although TGF-beta plays crucial roles in angiogenesis, the roles of TGF-beta signaling in lymphangiogenesis are unknown. We show here that TGF-beta transduced signals in human dermal lymphatic microvascular endothelial cells (HDLECs) and inhibited the proliferation, cord formation, and migration toward VEGF-C of HDLECs. Expression of lymphatic endothelial cell (LEC) markers, including LYVE-1 and Prox1 in HDLECs, as well as early lymph vessel development in mouse embryonic stem cells in the presence of VEGF-A and C, were repressed by TGF-beta but were induced by TGF-beta type I receptor (TbetaR-I) inhibitor. Moreover, inhibition of endogenous TGF-beta signaling by TbetaR-I inhibitor accelerated lymphangiogenesis in a mouse model of chronic peritonitis. Lymphangiogenesis was also induced by TbetaR-I inhibitor in the presence of VEGF-C in pancreatic adenocarcinoma xenograft models inoculated in nude mice. These findings suggest that TGF-beta transduces signals in LECs and plays an important role in the regulation of lymphangiogenesis in vivo.


Cancer Research | 2009

Autophagy Is Activated by TGF-β and Potentiates TGF-β–Mediated Growth Inhibition in Human Hepatocellular Carcinoma Cells

Kunihiko Kiyono; Hiroshi Suzuki; Hironori Matsuyama; Yasuyuki Morishita; Akiyoshi Komuro; Mitsunobu R. Kano; Koichi Sugimoto; Kohei Miyazono

Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that regulates cell growth, differentiation, and apoptosis of various types of cells. Autophagy is emerging as a critical response of normal and cancer cells to environmental changes, but the relationship between TGF-beta signaling and autophagy has been poorly understood. Here, we showed that TGF-beta activates autophagy in human hepatocellular carcinoma cell lines. TGF-beta induced accumulation of autophagosomes and conversion of microtubule-associated protein 1 light chain 3 and enhanced the degradation rate of long-lived proteins. TGF-beta increased the mRNA expression levels of BECLIN1, ATG5, ATG7, and death-associated protein kinase (DAPK). Knockdown of Smad2/3, Smad4, or DAPK, or inhibition of c-Jun NH(2)-terminal kinase, attenuated TGF-beta-induced autophagy, indicating the involvement of both Smad and non-Smad pathway(s). TGF-beta activated autophagy earlier than execution of apoptosis (6-12 versus 48 h), and reduction of autophagy genes by small interfering RNA attenuated TGF-beta-mediated growth inhibition and induction of proapoptotic genes Bim and Bmf, suggesting the contribution of autophagy pathway to the growth-inhibitory effect of TGF-beta. Additionally, TGF-beta also induced autophagy in some mammary carcinoma cells, including MDA-MB-231 cells. These findings show that TGF-beta signaling pathway activates autophagy in certain human cancer cells and that induction of autophagy is a novel aspect of biological functions of TGF-beta.


Cancer Research | 2007

Inhibition of Cyclooxygenase-2 Suppresses Lymph Node Metastasis via Reduction of Lymphangiogenesis

Caname Iwata; Mitsunobu R. Kano; Akiyoshi Komuro; Masako Oka; Kunihiko Kiyono; Erik Johansson; Yasuyuki Morishita; Masakazu Yashiro; Kosei Hirakawa; Michio Kaminishi; Kohei Miyazono

Cyclooxygenase-2 (COX-2) inhibitor has been reported to suppress tumor progression. However, it is unclear whether this inhibitor can also prevent lymphatic metastasis. To determine the effects of COX-2 inhibitor on lymphatic metastasis, etodolac, a COX-2 inhibitor, was given p.o. to mice bearing orthotopic xenografts or with carcinomatous peritonitis induced with a highly metastatic human diffuse-type gastric carcinoma cell line, OCUM-2MLN. Tumor lymphangiogenesis was significantly decreased in etodolac-treated mice compared with control mice. Consistent with this decrease in lymphangiogenesis, the total weight of metastatic lymph nodes was less in etodolac-treated mice than in control mice. Immunohistochemical analysis revealed that the major source of vascular endothelial growth factor-C (VEGF-C) and VEGF-D was F4/80-positive macrophages in our models. The mRNA levels of VEGF-C in mouse macrophage-like RAW264.7 cells, as well as those in tumor tissues, were suppressed by etodolac. The growth of human dermal lymphatic microvascular endothelial cells was also suppressed by etodolac. Supporting these findings, etodolac also inhibited lymphangiogenesis in a model of chronic aseptic peritonitis, suggesting that COX-2 can enhance lymphangiogenesis in the absence of cancer cells. Our findings suggest that COX-2 inhibitor may be useful for prophylaxis of lymph node metastasis by reducing macrophage-mediated tumor lymphangiogenesis.


Oncogene | 2011

Transforming growth factor-β decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells

Shogo Ehata; Erik Johansson; Ryohei Katayama; Sumie Koike; Akira Watanabe; Yukari Hoshino; Yoko Katsuno; Akiyoshi Komuro; Daizo Koinuma; Makoto Kano; Masakazu Yashiro; Kosei Hirakawa; Hiroyuki Aburatani; Naoya Fujita; Kohei Miyazono

Stem cells in normal tissues and cancer-initiating cells (CICs) are known to be enriched in side population (SP) cells. However, the factors responsible for the regulation of expression of ABCG2, involved in efflux of dyes, in SP cells have not been fully investigated. Here, we characterized the SP cells within diffuse-type gastric carcinoma, and examined the effects of transforming growth factor-β (TGF-β) on SP cells. Diffuse-type gastric carcinoma cells established from four independent patients universally contained SP cells between 1 and 4% of total cells, which displayed greater tumorigenicity than non-SP cells did. TGF-β repressed the transcription of ABCG2 through direct binding of Smad2/3 to its promoter/enhancer, and the number of SP cells and the tumor-forming ability of cancer cells were decreased by TGF-β, although ABCG2 is not directly involved in the tumor-forming ability of SP cells. Cancer cells from metastatic site expressed much higher levels of ABCG2 and included a greater percentage of SP cells than parental cancer cells did. SP cells are thus responsible for the progression of diffuse-type gastric carcinoma, and TGF-β negatively contributes to maintain the CICs within the cancer.


Journal of the National Cancer Institute | 2009

Diffuse-Type Gastric Carcinoma: Progression, Angiogenesis, and Transforming Growth Factor β Signaling

Akiyoshi Komuro; Masakazu Yashiro; Caname Iwata; Yasuyuki Morishita; Erik Johansson; Yoshiko Matsumoto; Akira Watanabe; Hiroyuki Aburatani; Hiroyuki Miyoshi; Kunihiko Kiyono; Yo Taro Shirai; Hiroshi Suzuki; Kosei Hirakawa; Mitsunobu R. Kano; Kohei Miyazono

Background Diffuse-type gastric carcinoma is a cancer with poor prognosis that has high levels of transforming growth factor β (TGF-β) expression and thick stromal fibrosis. However, the association of TGF-β signaling with diffuse-type gastric carcinoma has not been investigated in detail. Methods We used a lentiviral infection system to express a dominant-negative TGF-β type II receptor (dnTβRII) or green fluorescent protein (GFP) as a control in the diffuse-type gastric carcinoma cell lines, OCUM-2MLN and OCUM-12. These infected cells and the corresponding parental control cells were subcutaneously or orthotopically injected into nude mice. Angiogenesis was inhibited by infecting cells with a lentivirus carrying the gene for angiogenic inhibitor thrombospondin-1 or by injecting mice intraperitoneally with the small-molecule angiogenic inhibitor sorafenib or with anti-vascular endothelial growth factor (VEGF) neutralizing antibody (six or eight mice per group). Expression of phospho-Smad2 and thrombospondin-1 was investigated immunologically in human gastric carcinoma tissues from 102 patients. All statistical tests were two-sided. Results Expression of dnTβRII into OCUM-2MLN cells did not affect their proliferation in vitro, but it accelerated the growth of subcutaneously or orthotopically transplanted tumors in vivo (eg, for mean volume of subcutaneous tumors on day 10 relative to that on day 0: dnTβRII tumors = 3.49 and GFP tumors = 2.46, difference = 1.02, 95% confidence interval [CI] = 0.21 to 1.84; P = .003). The tumors expressing dnTβRII had higher levels of angiogenesis than those expressing GFP because of decreased thrombospondin-1 production. Similar results were obtained with OCUM-12 cells. Expression of thrombospondin-1 in the dnTβRII tumor or treatment with sorafenib or anti-VEGF antibody reduced tumor growth, whereas knockdown of thrombospondin-1 expression resulted in more accelerated growth of OCUM-2MLN tumors than of GFP tumors (eg, mean tumor volumes on day 14 relative to those on day 0: thrombospondin-1–knockdown tumors = 4.91 and GFP tumors = 3.79, difference = 1.12, 95% CI = 0.80 to 1.44; P < .001). Positive association between phosphorylated Smad2 and thrombospondin-1 immunostaining was observed in human gastric carcinoma tissues. Conclusions Disruption of TGF-β signaling in diffuse-type gastric carcinoma models appeared to accelerate tumor growth, apparently through increased tumor angiogenesis that was induced by decreased expression of thrombospondin-1.


The EMBO Journal | 2008

An Id‐like molecule, HHM, is a synexpression group‐restricted regulator of TGF‐β signalling

Hiroaki Ikushima; Akiyoshi Komuro; Kazunobu Isogaya; Masahiko Shinozaki; Ulf Hellman; Keiji Miyazawa; Kohei Miyazono

Transforming growth factor (TGF)‐β induces various cellular responses principally through Smad‐dependent transcriptional regulation. Activated Smad complexes cooperate with transcription factors in regulating a group of target genes. The target genes controlled by the same Smad‐cofactor complexes are denoted a synexpression group. We found that an Id‐like helix‐loop‐helix protein, human homologue of Maid (HHM), is a synexpression group‐restricted regulator of TGF‐β signalling. HHM suppressed TGF‐β‐induced growth inhibition and cell migration but not epithelial—mesenchymal transition. In addition, HHM inhibited TGF‐β‐induced expression of plasminogen activator inhibitor‐type 1 (PAI‐1), PDGF‐B, and p21WAF, but not Snail. We identified a basic‐helix‐loop‐helix protein, Olig1, as one of the Smad‐binding transcription factors affected by HHM. Olig1 interacted with Smad2/3 in response to TGF‐β stimulation, and was involved in transcriptional activation of PAI‐1 and PDGF‐B. HHM, but not Id proteins, inhibited TGF‐β signalling‐dependent association of Olig1 with Smad2/3 through physical interaction with Olig1. HHM thus appears to regulate a subset of TGF‐β target genes including the Olig1‐Smad synexpression group. HHM is the first example of a cellular response‐selective regulator of TGF‐β signalling with clearly determined mechanisms.

Collaboration


Dive into the Akiyoshi Komuro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge