Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiyuki Ozaki is active.

Publication


Featured researches published by Akiyuki Ozaki.


Molecular Genetics and Genomics | 2001

Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss)

Akiyuki Ozaki; Takashi Sakamoto; S. Khoo; K. Nakamura; M. R. M. Coimbra; T. Akutsu; Nobuaki Okamoto

Infectious pancreatic necrosis (IPN) is a well-known acute viral disease of salmonid species. We have identified quantitative trait loci (QTLs) associated with resistance to this disease in rainbow trout. We searched for linkage among 51 microsatellite markers used to construct a framework linkage map in backcross families of rainbow trout (Oncorhynchus mykiss), produced by crossing IPN-resistant (YN-RT201) and -susceptible (YK-RT101) strains. Two putative QTLs affecting disease resistance were detected on chromosomes A (IPN R S-1) and C (IPN R/S-2), respectively, suggesting that this is a polygenic trait in rainbow trout. These markers have great potential for use in marker-assisted selection (MAS) for IPN resistance and provide the basis for cloning of IPN resistance genes. Clarification of the genetic bases of complex traits has broad implications for fundamental research, but will also be of practical benefit to fish breeding.


Aquaculture | 2003

A genetic linkage map of the Japanese flounder, Paralichthys olivaceus

Maria Raquel Moura Coimbra; Kazunobu Kobayashi; Shinrokuro Koretsugu; Osamu Hasegawa; Eriko Ohara; Akiyuki Ozaki; Takashi Sakamoto; Kyoshi Naruse; Nobuaki Okamoto

Abstract We report the first genetic linkage map of the Japanese flounder ( Paralichthys olivaceus ) constructed with 111 microsatellite markers and 352 AFLP fragments. The parental male linkage map consisted of 25 linkage groups while the female map consisted of 27 groups, with an average resolution of 8 and 6.6 cM, respectively. We have identified linkage among 96% of the markers and the total map length was estimated to be around 1000–1200 cM. This study reports the first low-density linkage map for the Japanese flounder and describes differences in sex recombination. Recombination rates were higher in male flounder compared to the female (7.4:1), a rare condition among vertebrates. This map is a starting point for the mapping of single loci and quantitative traits in flatfish species.


BMC Genomics | 2010

A second generation genetic linkage map of Japanese flounder ( Paralichthys olivaceus )

Cecilia Castaño-Sánchez; Kanako Fuji; Akiyuki Ozaki; Osamu Hasegawa; Takashi Sakamoto; Kagayaki Morishima; Ichiro Nakayama; Atsushi Fujiwara; Tetsuji Masaoka; Hiroyuki Okamoto; Kengo Hayashida; Michihira Tagami; Jun Kawai; Yoshihide Hayashizaki; Nobuaki Okamoto

BackgroundJapanese flounder (Paralichthys olivaceus) is one of the most economically important marine species in Northeast Asia. Information on genetic markers associated with quantitative trait loci (QTL) can be used in breeding programs to identify and select individuals carrying desired traits. Commercial production of Japanese flounder could be increased by developing disease-resistant fish and improving commercially important traits. Previous maps have been constructed with AFLP markers and a limited number of microsatellite markers. In this study, improved genetic linkage maps are presented. In contrast with previous studies, these maps were built mainly with a large number of codominant markers so they can potentially be used to analyze different families and populations.ResultsSex-specific genetic linkage maps were constructed for the Japanese flounder including a total of 1,375 markers [1,268 microsatellites, 105 single nucleotide polymorphisms (SNPs) and two genes]; 1,167 markers are linked to the male map and 1,067 markers are linked to the female map. The lengths of the male and female maps are 1,147.7 cM and 833.8 cM, respectively. Based on estimations of map lengths, the female and male maps covered 79 and 82% of the genome, respectively. Recombination ratio in the new maps revealed F:M of 1:0.7. All linkage groups in the maps presented large differences in the location of sex-specific recombination hot-spots.ConclusionsThe improved genetic linkage maps are very useful for QTL analyses and marker-assisted selection (MAS) breeding programs for economically important traits in Japanese flounder. In addition, SNP flanking sequences were blasted against Tetraodon nigroviridis (puffer fish) and Danio rerio (zebrafish), and synteny analysis has been carried out. The ability to detect synteny among species or genera based on homology analysis of SNP flanking sequences may provide opportunities to complement initial QTL experiments with candidate gene approaches from homologous chromosomal locations identified in related model organisms.


Molecular Genetics and Genomics | 2001

Genetic mapping of the dominant albino locus in rainbow trout (Oncorhynchus mykiss).

K. Nakamura; Akiyuki Ozaki; T. Akutsu; K. Iwai; Takashi Sakamoto; Goro Yoshizaki; Nobuaki Okamoto

Abstract. Albinism in animals is generally a recessive trait, but in Japan a dominant oculocutaneous albino (OCA) mutant strain has been isolated in rainbow trout (Oncorhyncus mykiss). After confirming that this trait is not due to a tyrosinase gene mutation that causes OCA1 (tyrosinase-negative OCA), we combined the amplified fragment length polymorphism (AFLP) technique with bulked segregant analysis (BSA) to map the gene involved in dominant oculocutaneous albinism. Four AFLP markers tightly linked to the dominant albino locus were identified. One of these markers was codominant and we have it converted into a GGAGT-repeat microsatellite marker, OmyD-AlbnTUF. Using this pentanucleotide-repeat DNA marker, the dominant albino locus has been mapped on linkage group G of a reference linkage map of rainbow trout. The markers identified here will facilitate cloning of the dominant albino gene in rainbow trout and contribute to a better understanding of tyrosinase-negative OCA in animals.


PLOS ONE | 2013

Quantitative Trait Loci (QTL) Associated with Resistance to a Monogenean Parasite (Benedenia seriolae) in Yellowtail (Seriola quinqueradiata) through Genome Wide Analysis

Akiyuki Ozaki; Kazunori Yoshida; Kanako Fuji; Satoshi Kubota; Wataru Kai; Jun-ya Aoki; Yumi Kawabata; Junpei Suzuki; Kazuki Akita; Takashi Koyama; Masahiro Nakagawa; Takurou Hotta; Tatsuo Tsuzaki; Nobuaki Okamoto; Kazuo Araki; Takashi Sakamoto

Benedenia infections caused by the monogenean fluke ectoparasite Benedenia seriolae seriously impact marine finfish aquaculture. Genetic variation has been inferred to play a significant role in determining the susceptibility to this parasitic disease. To evaluate the genetic basis of Benedenia disease resistance in yellowtail (Seriola quinqueradiata), a genome-wide and chromosome-wide linkage analyses were initiated using F1 yellowtail families (n = 90 per family) based on a high-density linkage map with 860 microsatellite and 142 single nucleotide polymorphism (SNP) markers. Two major quantitative trait loci (QTL) regions on linkage groups Squ2 (BDR-1) and Squ20 (BDR-2) were identified. These QTL regions explained 32.9–35.5% of the phenotypic variance. On the other hand, we investigated the relationship between QTL for susceptibility to B. seriolae and QTL for fish body size. The QTL related to growth was found on another linkage group (Squ7). As a result, this is the first genetic evidence that contributes to detailing phenotypic resistance to Benedenia disease, and the results will help resolve the mechanism of resistance to this important parasitic infection of yellowtail.


Diseases of Aquatic Organisms | 2013

Growth of cyprinid herpesvirus 2 (CyHV-2) in cell culture and experimental infection of goldfish Carassius auratus.

Takafumi Ito; Jun Kurita; Akiyuki Ozaki; Motohiko Sano; Hideo Fukuda; Mitsuru Ototake

Herpesviral haematopoietic necrosis has caused great economic damage to goldfish Carassius auratus aquaculture in Japan. The existence of cyprinid herpesvirus 2 (CyHV-2), the causative agent, has also been reported from several other countries. To prevent spread to other areas, basic virological information such as viral kinetics in infected fish is essential. Experimental infection trials using reliably prepared CyHV-2 for defining viral kinetics are difficult to carry out because successful and sustainable propagation of this virus in cell culture has previously been limited. Here we describe a method for sustainable propagation of CyHV-2 in cell culture, and the results of fish infection experiments using the propagated virus. We found that goldfish fin (GFF) cells and standard Ryukin Takafumi (SRTF) cells established from goldfish fin can be used for continuous propagation of CyHV-2. Experimental infections using 2 varieties of goldfish, Ryukin and Edonishiki, were performed with the virus passaged 7 times in GFF cells. In transmission experiments with water temperature at 20°C, cumulative mortality was 30% in Ryukin infected by immersion, and 90 and 100% in Edonishiki and Ryukin intraperitoneally injected with the virus, respectively. In an experiment carried out at 25°C, 90% of Edonishiki challenged by immersion died. PCR detection of viral DNA from the organs of infected fish showed that systemic infection occurs and also that the kidney is a main viral multiplication site. Moreover, CyHV-2 was successfully re-isolated in GFF cells from the dead fish.


BMC Genomics | 2015

Second generation physical and linkage maps of yellowtail (Seriola quinqueradiata) and comparison of synteny with four model fish

Jun-ya Aoki; Wataru Kai; Yumi Kawabata; Akiyuki Ozaki; Kazunori Yoshida; Takashi Koyama; Takashi Sakamoto; Kazuo Araki

BackgroundPhysical and linkage maps are important aids for the assembly of genome sequences, comparative analyses of synteny, and to search for candidate genes by quantitative trait locus analysis. Yellowtail, Seriola quinqueradiata, is an economically important species in Japanese aquaculture, and genetic information will be useful for DNA-assisted breeding. We report the construction of a second generation radiation hybrid map, its synteny analysis, and a second generation linkage map containing SNPs (single nucleotide polymorphisms) in yellowtail.ResultsApproximately 1.4 million reads were obtained from transcriptome sequence analysis derived from 11 tissues of one individual. To identify SNPs, cDNA libraries were generated from a pool of 500 whole juveniles, and the gills and kidneys of 100 adults. 9,356 putative SNPs were detected in 6,025 contigs, with a minor allele frequency ≥25%. The linkage and radiation hybrid maps were constructed based on these contig sequences. 2,081 markers, including 601 SNPs markers, were mapped onto the linkage map, and 1,532 markers were mapped in the radiation hybrid map.ConclusionsThe second generation linkage and physical maps were constructed using 6,025 contigs having SNP markers. These maps will aid the de novo assembly of sequencing reads, linkage studies and the identification of candidate genes related to important traits. The comparison of marker contigs in the radiation hybrid map indicated that yellowtail is evolutionarily closer to medaka than to green-spotted pufferfish, three-spined stickleback or zebrafish. The synteny analysis may aid studies of chromosomal evolution in yellowtail compared with model fish.


Mammalian Genome | 2005

A comparative analysis of the rainbow trout genome with 2 other species of fish (Arctic charr and Atlantic salmon) within the tetraploid derivative Salmonidae family (subfamily: Salmoninae)

Roy G. Danzmann; Margaret Cairney; William S. Davidson; Moira M. Ferguson; Karim Gharbi; René Guyomard; Lars-Erik Holm; Erica Leder; Nobuaki Okamoto; Akiyuki Ozaki; Caird E. Rexroad; Takashi Sakamoto; John B. Taggart; Rachael A. Woram

We updated the genetic map of rainbow trout (Oncorhynchus mykiss) for 2 outcrossed mapping panels, and used this map to assess the putative chromosome structure and recombination rate differences among linkage groups. We then used the rainbow trout sex-specific maps to make comparisons with 2 other ancestrally polyploid species of salmonid fishes, Arctic charr (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to identify homeologous chromosome affinities within each species and ascertain homologous chromosome relationships among the species. Salmonid fishes exhibit a wide range of sex-specific differences in recombination rate, with some species having the largest differences for any vertebrate species studied to date. Our current estimate of female:male recombination rates in rainbow trout is 4.31:1. Chromosome structure and (or) size is associated with recombination rate differences between the sexes in rainbow trout. Linkage groups derived from presumptive acrocentric type chromosomes were observed to have much lower sex-specific differences in recombination rate than metacentric type linkage groups. Arctic charr is karyotypically the least derived species (i.e., possessing a high number of acrocentric chromosomes) and Atlantic salmon is the most derived (i.e., possessing a number of whole-arm fusions). Atlantic salmon have the largest female:male recombination ratio difference (i.e., 16.81:1) compared with rainbow trout, and Arctic charr (1.69:1). Comparisons of recombination rates between homologous segments of linkage groups among species indicated that when significant experiment-wise differences were detected (7/24 tests), recombination rates were generally higher in the species with a less-derived chromosome structure (6/7 significant comparisons). Greater similarity in linkage group syntenies were observed between Atlantic salmon and rainbow trout, suggesting their closer phylogenetic affinities, and most interspecific linkage group comparisons support a model that suggests whole chromosome arm translocations have occurred in the evolution of this group. However, some possible exceptions were detected and these findings are discussed in relation to their influence on segregation distortion patterns. We also report unusual meiotic segregation patterns in a female parent involving the duplicated (homeologous) linkage group pair 12/16 and discuss several models that may account for these patterns.


Marine Biotechnology | 2015

Identification of Sex-Linked SNPs and Sex-Determining Regions in the Yellowtail Genome

Takashi Koyama; Akiyuki Ozaki; Kazunori Yoshida; Junpei Suzuki; Kanako Fuji; Jun-ya Aoki; Wataru Kai; Yumi Kawabata; Tatsuo Tsuzaki; Kazuo Araki; Takashi Sakamoto

Unlike the conservation of sex-determining (SD) modes seen in most mammals and birds, teleost fishes exhibit a wide variety of SD systems and genes. Hence, the study of SD genes and sex chromosome turnover in fish is one of the most interesting topics in evolutionary biology. To increase resolution of the SD gene evolutionary trajectory in fish, identification of the SD gene in more fish species is necessary. In this study, we focused on the yellowtail, a species widely cultivated in Japan. It is a member of family Carangidae in which no heteromorphic sex chromosome has been observed, and no SD gene has been identified to date. By performing linkage analysis and BAC walking, we identified a genomic region and SNPs with complete linkage to yellowtail sex. Comparative genome analysis revealed the yellowtail SD region ancestral chromosome structure as medaka-fugu. Two inversions occurred in the yellowtail linage after it diverged from the yellowtail-medaka ancestor. An association study using wild yellowtails and the SNPs developed from BAC ends identified two SNPs that can reasonably distinguish the sexes. Therefore, these will be useful genetic markers for yellowtail breeding. Based on a comparative study, it was suggested that a PDZ domain containing the GIPC protein might be involved in yellowtail sex determination. The homomorphic sex chromosomes widely observed in the Carangidae suggest that this family could be a suitable marine fish model to investigate the early stages of sex chromosome evolution, for which our results provide a good starting point.


BMC Genomics | 2014

Construction of a radiation hybrid panel and the first yellowtail ( Seriola quinqueradiata ) radiation hybrid map using a nanofluidic dynamic array

Jun-ya Aoki; Wataru Kai; Yumi Kawabata; Akiyuki Ozaki; Kazunori Yoshida; Tatsuo Tsuzaki; Kanako Fuji; Takashi Koyama; Takashi Sakamoto; Kazuo Araki

BackgroundYellowtail (Seriola quinqueradiata) are an economically important species in Japan. However, there are currently no methods for captive breeding and early rearing for yellowtail. Thus, the commercial cultivation of this species is reliant upon the capture of wild immature fish. Given this, there is a need to develop captive breeding techniques to reduce pressure on wild stocks and facilitate the sustainable development of yellowtail aquaculture. We constructed a whole genome radiation hybrid (RH) panel for yellowtail gene mapping and developed a framework physical map using a nanofluidic dynamic array to use SNPs (single nucleotide polymorphisms) in ESTs (expressed sequence tags) for the DNA-assisted breeding of yellowtail.ResultsClonal RH cell lines were obtained after ionizing radiation; specifically, 78, 64, 129, 55, 42, and 53 clones were isolated after treatment with 3,000, 4,000, 5,000, 6,000, 8,000, or 10,000 rads, respectively. A total of 421 hybrid cell lines were obtained by fusion with mouse B78 cells. Ninety-four microsatellite markers used in the genetic linkage map were genotyped using the 421 hybrid cell lines. Based upon marker retention and genome coverage, we selected 93 hybrid cell lines to form an RH panel. Importantly, we performed the first genotyping of yellowtail markers in an RH panel using a nanofluidic dynamic array (Fluidigm, CA, USA). Then, 580 markers containing ESTs and SNPs were mapped in the first yellowtail RH map.ConclusionsWe successfully developed a yellowtail RH panel to facilitate the localization of markers. Using this, a framework RH map was constructed with 580 markers. This high-density physical map will serve as a useful tool for the identification of genes related to important breeding traits using genetic structural information, such as conserved synteny. Moreover, in a comparison of 30 sequences in the RH group 1 (SQ1), yellowtail appeared to be evolutionarily closer to medaka and the green-spotted pufferfish than to zebrafish. We suggest that synteny analysis may be potentially useful as a tool to investigate chromosomal evolution by comparison with model fish.

Collaboration


Dive into the Akiyuki Ozaki's collaboration.

Top Co-Authors

Avatar

Takashi Sakamoto

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nobuaki Okamoto

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kanako Fuji

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Kubota

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Motohiko Sano

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoji Nakamura

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge