Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akos Szakmary is active.

Publication


Featured researches published by Akos Szakmary.


British Journal of Nutrition | 2008

Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview.

Siegfried Knasmüller; Armen Nersesyan; Miroslav Mišík; Christopher Gerner; Wolfgang Mikulits; Veronika Ehrlich; Christine Hoelzl; Akos Szakmary; Karl-Heinz Wagner

This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiological conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.


Mutation Research-reviews in Mutation Research | 2010

Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models.

Aya M. Westbrook; Akos Szakmary; Robert H. Schiestl

Chronic inflammation is strongly associated with approximately 1/5th of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohns disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With regards to extraintestinal manifestations such as lymphoma, however, more suitable models are required to further investigate the complex and heterogeneous mechanisms that may be at play.


Mutation Research\/environmental Mutagenesis and Related Subjects | 1989

Investigations on the use of EDTA-permeabilized E. coli cells in liquid suspension and animal-mediated genotoxicity assays.

Siegfried Knasmüller; Akos Szakmary; Alfred Wottawa

The potential use of EDTA-permeabilized E. coli cells for the investigation of genotoxic effects of compounds with a large molecular configuration in vitro and in animal-mediated differential DNA-repair assays was studied. The indicator for the induction of (repairable) DNA damage was a pair of E. coli K-12 strains (343/765 and 343/753) differing vastly in DNA-repair capacity (uvr+/rec+ vs. uvrB/recA). Investigations on the influence of EDTA treatment on the viability of these strains show that during short-term exposure (3 min), the EDTA level should not exceed 0.5 mmole/l in the pretreatment mix, since at higher concentrations a marginal titer reduction of the repair-deficient strain occurs, thus indicating a weak genotoxic activity of this chelating agent. Comparisons of the results gained in vitro with permeabilized and untreated cells demonstrate that EDTA exposure leads to a substantial enhancement of the sensitivity of the indicator bacteria towards DNA damage induced by B(a)P and N-Ac-2AAF which is essential for the detection of genotoxic activities of these polycyclic aromatic compounds. Experiments to elucidate the possibility of employing EDTA-treated cells in vivo show that following intravenous and oral administration the recovery rates of permeabilized indicator strains from various mouse organs are substantially lower than those found under identical conditions (exposure time 150 min) with untreated strains. Nevertheless enough viable cells can be recovered from liver, spleen, kidneys, lungs and stomach to allow the investigation of organ-specific genotoxicity. It is furthermore noteworthy that exposure of permeabilized indicator cells in control animals (for 150 min) resulted in a marginal reduction of the relative survival of the repair-deficient strain in all organs investigated, whereas with non-treated strains such effects are only detectable after extended exposure periods. The observation of a slightly elevated genotoxic background under in vivo conditions does not prevent the assessment of the organ distribution of genotoxic effects induced by mutagens and/or carcinogens: in the case of B(a)P, intraperitoneal administration to mice in the dose range of 10-50 mg/kg body weight resulted in a pronounced dose-dependent inactivation of the uvrB/recA cells in the liver. Also in the lungs differential killing effects occurred at the highest dose tested, whereas no genotoxic activities were detectable in stomach, kidneys and spleen of the host animals.


Archives of Toxicology | 2016

Mouse models of intestinal inflammation and cancer

Aya M. Westbrook; Akos Szakmary; Robert H. Schiestl

Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn’s disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With regard to extraintestinal manifestations such as lymphoma, however, more suitable models are required to further investigate the complex and heterogeneous mechanisms that may be at play.


Chemico-Biological Interactions | 1990

Use of differential DNA-repair host mediated assays to investigate the biotransformation of xenobiotics in Drosophila melanogaster. I. Genotoxic effects of nitrosamines

Siegfried Knasmüller; Akos Szakmary; Manfred Kehrer

A rapid differential DNA-repair assay procedure was developed to investigate the biotransformation of xenobiotics in Drosophila melanogaster in vivo. Indicator of genotoxic activity was a pair of streptomycin-dependent Escherichia coli strains differing vastly in DNA repair capacity (uvr+/rec+ vs. uvrB/recA). Prior to the experiments with test compounds, mixtures of the two strains were injected into the abdomina of untreated animal hosts (male Berlin-K flies) and the time-dependent recovery kinetics determined. Subsequently, different aliphatic and aromatic nitrosamines were tested. Solutions of the compounds were injected simultaneously with the indicator cells. Three hours later, the flies were killed, homogenized and the induction of (repairable) DNA damage determined by comparison of the survival rates of the two strains in single animals. Eight carcinogenic compounds (nitrosodiethylamine, NDEA; nitrosodimethylamine, NDMA; nitrosodi-npropylamine, NDPA; nitrosodiethanolamine, NDELA; nitrosomethylaniline, NMA; 4-methyl-nitrosopiperidine, MNPIP; nitrosopyrrolidine, NPYR; nitrosomorpholine, NMOR) and one whose tumorigenic activities are still controversially discussed (nitrosodiphenylamine, NDPhA) induced dose-dependent differential killing effects in the present system. One agent which has not been found carcinogenic in rodents (2.6-dimethyl-nitrosopiperidiine. NDMPIP) gave negative results. The ranking order of genotoxic activities of the nitrosamines found in Drosophila in vivo is in good agreement with those of carcinogenic potencies established on the basis of experiments with rats. The most pronounced exceptions are the rather weak response towards NMA and the stronger DNA damaging activity of NMPIP compared to NDMA. Phenobarbital (5-ethyl-5-phenyl-2,4,6-trioxohepatahydropyramidine) (PB) feeding of the flies resulted in an increase of the DNA damaging potencies of all nitrosamines tested. Substantial enhancement of the induction of DNA damage was however, restricted to NDEA, NPYR and NMOR, whereas with nitrosodiphenylamine (NDPhA), NDELA and NDMA only a moderate (less than 25%) increase of differential killing effects was found. In the case of the two latter compounds, these results might be due to the fact that enzymes other than the MFO are involved in their activation. Attempts to localize the formation and/or distribution of metabolites in the bodies of fruitflies by separation of the tagmata of chemically treated animals and determination of genotoxic effects in the different segments indicate that the most pronounced effects occur in the abdomina whereas in heads and thoraxes comparatively lower activities are detectable.


Nutrients | 2017

Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice

Michaela Böhmdorfer; Akos Szakmary; Robert H. Schiestl; Javier Vaquero; Juliane Riha; Stefan Brenner; Theresia Thalhammer; Thomas Szekeres; Walter Jäger

Resveratrol is a naturally occurring polyphenolic compound with various pharmacological activities. It is unknown whether the expression of metabolizing enzymes correlates with resveratrol levels in organs and tissues. Therefore, we investigated the metabolism and tissue distribution of resveratrol in mice and assessed its association with the expression of UDP-glucuronosyltransferase (Ugt) and sulfotransferase (Sult) genes. Plasma, urine, feces, and various organs were analyzed using high-performance liquid chromatography at up to 8 h after intragastric resveratrol administration. The metabolism of resveratrol was pronounced, leading to the formation of resveratrol glucuronides and sulfates. Concentrations of resveratrol and its metabolites were high in the gastrointestinal organs, urine, and feces, but low in the liver and kidneys. In lung, heart, thymus, and brain tissues, parent resveratrol levels exceeded the sulfate and glucuronide concentrations. The formation of resveratrol conjugates correlated with the expression of certain Ugt and Sult genes. Reverse transcription quantitative PCR (RT-qPCR) analysis revealed high mRNA expression of Ugt1a1 and Ugt1a6a in the liver, duodenum, jejunum, ileum, and colon, leading to high concentrations of resveratrol-3-O-glucuronide in these organs. Strong correlations of resveratrol-3-O-sulfate and resveratrol-3-O-4′-O-disulfate formation with Sult1a1 mRNA expression were also observed, particularly in the liver and colon. In summary, our data revealed organ-specific expression of Sults and Ugts in mice that strongly affects resveratrol concentrations; this may also be predictive in humans following oral uptake of dietary resveratrol.


Archives of Toxicology | 2018

Retraction Note to: Mouse models of intestinal inflammation and cancer

Aya M. Westbrook; Akos Szakmary; Robert H. Schiestl

The original article can be found online.


Mutation Research-reviews in Mutation Research | 2008

Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad?

Philipp Saiko; Akos Szakmary; Walter Jaeger; Thomas Szekeres


Environmental and Molecular Mutagenesis | 1989

Studies on the antimutagenic activities of garlic extract

Siegfried Knasmüller; Rainer de Martin; Gyula Domjan; Akos Szakmary


Oncology Reports | 2008

Stilbene analogues affect cell cycle progression and apoptosis independently of each other in an MCF-7 array of clones with distinct genetic and chemoresistant backgrounds

Yvonne Bader; Sibylle Madlener; Stephan Strasser; Susanne Maier; Philipp Saiko; Nicole Stark; Ruxandra Popescu; Daniela Huber; Michaela Gollinger; Thomas Erker; Norbert Handler; Akos Szakmary; Walter Jäger; Brigitte Kopp; Ioannis Tentes; Monika Fritzer-Szekeres; Georg Krupitza; Thomas Szekeres

Collaboration


Dive into the Akos Szakmary's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Szekeres

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Philipp Saiko

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Huber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge