Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Al Claiborne is active.

Publication


Featured researches published by Al Claiborne.


The FASEB Journal | 1993

Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation.

Al Claiborne; H Miller; Derek Parsonage; R P Ross

Sulfenic acids (R‐SOH) result from the stoichiometric oxidations of thiols with mild oxidants such as H2O2; in solution, however, these derivatives accumulate only transiently due to rapid self‐condensation reactions, further oxidations to the sulfinic and/or sulfonic acids, and reactions with nucleophiles such as R‐SH. In contrast, oxidations of cysteinyl side chains in proteins, where disulfide bond formation can be prevented and where the reactivity of the nascent cysteine‐sulfenic acid (Cys‐SOH) can be controlled, have previously been shown to yield stable active‐site Cys‐SOH derivatives of papain and glyceraldehyde‐3‐phosphate dehydrogenase. More recently, however, functional Cys‐SOH residues have been identified in the native oxidized forms of the FAD‐containing NADH peroxidase and NADH oxidase from Streptococcus faecalis; these two proteins constitute a new class within the flavoprotein disulfide reductase family. In addition, Cys‐SOH derivatives have been suggested to play important roles in redox regulation of the DNA‐binding activities of transcription factors such as Fos and Jun, OxyR, and bovine papillomavirus type 1 E2 protein. Structural inferences for the stabilization of protein‐sulfenic acids, drawn from the refined 2.16‐Å structure of the streptococcal NADH peroxidase, provide a molecular basis for understanding the proposed redox functions of these novel cofactors in both enzyme catalysis and transcriptional regulation.— Claiborne, A., Miller, H., Parsonage, D., Ross, R. P. Protein‐sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 7: 1483‐1490; 1993.


Nature Chemical Biology | 2009

Bacillithiol is an antioxidant thiol produced in Bacilli

Gerald L. Newton; Mamta Rawat; James J. La Clair; Vishnu Karthik Jothivasan; Tanya Budiarto; Chris J. Hamilton; Al Claiborne; John D. Helmann; Robert C. Fahey

Glutathione is a nearly ubiquitous low-molecular-weight thiol and antioxidant, although it is conspicuously absent from most Gram-positive bacteria. We identify here the structure of bacillithiol, a novel and abundant thiol produced by Bacillus species, Staphylococcus aureus, and Deinococcus radiodurans. Bacillithiol is the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid and likely functions as an antioxidant. Bacillithiol, like structurally similar mycothiol, may serve as a substitute for glutathione.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli

Ahmed Gaballa; Gerald L. Newton; Haike Antelmann; Derek Parsonage; Heather Upton; Mamta Rawat; Al Claiborne; Robert C. Fahey; John D. Helmann

Bacillithiol (BSH), the α-anomeric glycoside of L-cysteinyl-D-glucosamine with L-malic acid, is a major low-molecular-weight thiol in Bacillus subtilis and related bacteria. Here, we identify genes required for BSH biosynthesis and provide evidence that the synthetic pathway has similarities to that established for the related thiol (mycothiol) in the Actinobacteria. Consistent with a key role for BSH in detoxification of electrophiles, the BshA glycosyltransferase and BshB1 deacetylase are encoded in an operon with methylglyoxal synthase. BshB1 is partially redundant in function with BshB2, a deacetylase of the LmbE family. Phylogenomic profiling identified a conserved unknown function protein (COG4365) as a candidate cysteine-adding enzyme (BshC) that co-occurs in genomes also encoding BshA, BshB1, and BshB2. Additional evolutionarily linked proteins include a thioredoxin reductase homolog and two thiol:disulfide oxidoreductases of the DUF1094 (CxC motif) family. Mutants lacking BshA, BshC, or both BshB1 and BshB2 are devoid of BSH. BSH is at least partially redundant in function with other low-molecular-weight thiols: redox proteomics indicates that protein thiols are largely reduced even in the absence of BSH. At the transcriptional level, the induction of genes controlled by two thiol-based regulators (OhrR, Spx) occurs normally. However, BSH null cells are significantly altered in acid and salt resistance, sporulation, and resistance to electrophiles and thiol reactive compounds. Moreover, cells lacking BSH are highly sensitive to fosfomycin, an epoxide-containing antibiotic detoxified by FosB, a prototype for bacillithiol-S-transferase enzymes.


Advances in Protein Chemistry | 2001

Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation

Al Claiborne; T. Conn Mallett; Joanne I. Yeh; James Luba; Derek Parsonage

A primary objective of this review is to facilitate the application of the chemical and structural approaches that are currently being employed in the identification of Cys-SOH, as both transient intermediates and stable redox forms, in biochemical systems where these derivatives are suspected of playing key roles in redox catalysis or regulation. These range from high-resolution crystallographic analyses benefiting from recent technological advances in rapid data collection at cryogenic temperatures to 13C NMR investigations of [3-(13)C]Cys-labeled proteins and chemical modification protocols that can be integrated with both UV-visible and fluorescence spectroscopic as well as mass spectrometric (especially ESI, MALDI-TOF, and even FT ion-cyclotron-resonance) analyses. In summarizing the diversity of biological functions currently identified with Cys-SH reversible Cys-SOH redox cycles (Fig. 17), it should also be [figure: see text] emphasized that in at least one protein (nitrile hydratase) stable Cys-SOH and Cys-SO2H derivatives play important structural roles while also modulating the electronic properties of the iron center; in neither case is the Cys-SOH residue itself involved in reduction and oxidation. The somewhat incomplete structural descriptions of the oxidized Cys forms involved in redox regulation of some transcription factors (e.g., BPV-1 E2 protein and activator protein-1) indicate that there is ample room for the application of the types of investigations employed, for example, with NADH peroxidase and the AhpC peroxiredoxin, with a view toward defining the potential roles of Cys-SOH in these very important contexts of intracellular redox signaling. These advances will also build on the recent progress in defining sulfenic acid stabilization and properties in small molecule model systems, as evidenced in the work of Okazaki, Goto, and others. When viewed in the perspective of Allisons 1976 review on the subject of sulfenic acids in proteins, the reader will hopefully come to appreciate the conclusion that the concept of protein-sulfenic acids has now become a very well-defined and established principle of biochemistry, with current efforts in this and other laboratories being directed to bring about still more detailed understanding of Cys-SOH function in both redox and nonredox modes of enzyme catalysis and regulation of protein function.


Journal of Bacteriology | 2000

Contribution of NADH Oxidase to Aerobic Metabolism of Streptococcus pyogenes

Carmela M. Gibson; T. Conn Mallett; Al Claiborne; Michael G. Caparon

An understanding of how the heme-deficient gram-positive bacterium Streptococcus pyogenes establishes infections in O(2)-rich environments requires careful analysis of the gene products important in aerobic metabolism. NADH oxidase (NOXase) is a unique flavoprotein of S. pyogenes and other lactic acid bacteria which directly catalyzes the four-electron reduction of O(2) to H(2)O. To elucidate a putative role for this enzyme in aerobic metabolism, NOXase-deficient mutants were constructed by insertional inactivation of the gene that encodes NOXase. Characterization of the resulting mutants revealed that growth in rich medium under low-O(2) conditions was indistinguishable from that of the wild type. However, the mutants were unable to grow under high-O(2) conditions and demonstrated enhanced sensitivity to the superoxide-generating agent paraquat. Mutants cultured in liquid medium under conditions of carbohydrate limitation and high O(2) tension were characterized by an extended lag phase, a reduction in growth, and a greater accumulation of H(2)O(2) in the growth medium compared to the wild-type strain. All of these mutant phenotypes could be overcome by the addition of glucose. Either the addition of catalase to the culture medium of the mutants or the introduction of a heterologous NADH peroxidase into the mutants eliminated the accumulation of H(2)O(2) and rescued the growth defect of the mutants under high-O(2) conditions in carbohydrate-limited liquid medium. Taken together, these data show that NOXase is important for aerobic metabolism and essential in environments high in O(2) with carbohydrate limitation.


Journal of Molecular Biology | 1992

Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1: Comparison with NADH peroxidase and the flavoprotein disulfide reductases

R. Paul Ross; Al Claiborne

The gene encoding the streptococcal flavoprotein NADH oxidase (NOXase), which catalyzes the four-electron reduction of O2-->2H2O, has been cloned and sequenced from the genome of Streptococcus (Enterococcus) faecalis 10C1 (ATCC 11700). The deduced NOXase protein sequence corresponds to a molecular mass of 48.9 kDa and contains three previously sequenced cysteinyl peptides obtained with the purified enzyme. In Escherichia coli, the expressed nox gene produced a catalytically active product, which retained its immunoreactivity to affinity-purified NOXase antisera. Alignment of the NOXase protein sequence with that of streptococcal NADH peroxidase (NPXase) revealed that the proteins are 44% identical. Among the most highly conserved segments is a sequence containing Cys42; this residue is known to exist as a stabilized cysteine-sulfenic acid (Cys-SOH) in NPXase and serves as the non-flavin redox center. In addition, three previously identified NPXase segments, known to be involved in FAD and NAD(P)-binding in other pyridine nucleotide-linked flavoprotein oxidoreductases, are strongly conserved in NOXase. Overall, the extensive homology observed between NOXase and NPXase suggests that the monomer chain fold of the oxidase closely resembles that of the peroxidase. Both sequences share limited but significant homology to those of glutathione reductase and other members of the flavoprotein disulfide reductase family. These and other considerations suggest that these two unusual streptococcal flavoproteins constitute a distinct class of FAD-dependent oxidoreductases, the flavoprotein peroxide reductases, easily contrasted with enzymes such as glutathione reductase and thioredoxin reductase.


Journal of Biological Chemistry | 1997

Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue.

Véronique Charrier; Ellen Buckley; Derek Parsonage; Anne Galinier; Emmanuelle Darbon; Michel Jaquinod; Eric Forest; Josef Deutscher; Al Claiborne

The glpK genes of Enterococcus casseliflavus and Enterococcus faecalis, encoding glycerol kinase, the key enzyme of glycerol uptake and metabolism in bacteria, have been cloned and sequenced. The translated amino acid sequences exhibit strong homology to the amino acid sequences of other bacterial glycerol kinases. After expression of the enterococcalglpK genes in Escherichia coli, both glycerol kinases were purified and were found to be phosphorylated by enzyme I and the histidine-containing protein of the phosphoenolpyruvate:glycose phosphotransferase system. Phosphoenolpyruvate-dependent phosphorylation caused a 9-fold increase in enzyme activity. The site of phosphorylation in glycerol kinase of E. casseliflavus was determined as His-232. Site-specific mutagenesis was used to replace His-232 in glycerol kinase of E. casseliflavus with an alanyl, glutamate, or arginyl residue. The mutant proteins could no longer be phosphorylated confirming that His-232 of E. casseliflavusglycerol kinase represents the site of phosphorylation. The His232 → Arg glycerol kinase exhibited an about 3-fold elevated activity compared with wild-type glycerol kinase. Fructose 1,6-bisphosphate was found to inhibit E. casseliflavusglycerol kinase activity. However, neither EIIAGlc fromE. coli nor the EIIAGlc domain ofBacillus subtilis had an inhibitory effect on glycerol kinase of E. casseliflavus.


Journal of Molecular Biology | 1991

Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution.

T. Stehle; S.A. Ahmed; Al Claiborne; Georg E. Schulz

The crystal structure of NADH peroxidase (EC 1.11.1.1) from Streptococcus faecalis 10C1 (Enterococcus faecalis) has been refined to a resolution of 2.16 A using the simulated annealing method. The final crystallographic R-factor is 17.7% for all data in the resolution range 7 to 2.16 A. The standard deviations are 0.015 A in bond lengths and 3.0 degrees in bond angles for the final model, which includes all 447 amino acid residues, one FAD and 369 water molecules. The enzyme is a symmetrical tetramer with point group D2; the symmetry is crystallographic. The redox center of the enzyme consists of FAD and a cysteine (Cys42), which forms a sulfenic acid (Cys-SOH) in its oxidized state. A histidine (His10) close to Cys42 is likely to act as an active-site base. In the analyzed crystal, the enzyme was in a non-native oxidation state with Cys42 oxidized to a sulfonic acid Cys-SO3H. The chain fold of NADH peroxidase is similar to those of disulfide oxidoreductases. A comparison with glutathione reductase, a representative of this enzyme family, is given.


Biochemistry | 2010

Characterization of the N-acetyl-α-D-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis .

Derek Parsonage; Gerald L. Newton; Robert C. Holder; Bret D. Wallace; Carleitta Paige; Chris J. Hamilton; Patricia C. Dos Santos; Matthew R. Redinbo; Sean D. Reid; Al Claiborne

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.


Journal of Bacteriology | 2000

Branched-Chain α-Keto Acid Catabolism via the Gene Products of the bkd Operon in Enterococcus faecalis: a New, Secreted Metabolite Serving as a Temporary Redox Sink

D E Ward; C.C. van der Weijden; M J Van Der Merwe; Hans Westerhoff; Al Claiborne; J.L. Snoep

Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain alpha-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified the presence of a single promoter upstream of the bkd gene cluster. Furthermore, a putative catabolite-responsive element was identified in the promoter region, indicative of catabolite repression. Consistent with this was the observation that expression of the bkd gene cluster is repressed in the presence of glucose, fructose, and lactose. It is proposed that the conversion of the branched-chain alpha-keto acids to the corresponding free acids results in the formation of ATP via substrate level phosphorylation. The utilization of the alpha-keto acids resulted in a marked increase of biomass, equivalent to a net production of 0.5 mol of ATP per mol of alpha-keto acid metabolized. The pathway was active under aerobic as well as anaerobic conditions. However, under anaerobic conditions the presence of a suitable electron acceptor to regenerate NAD(+) from the NADH produced by the branched-chain alpha-keto acid dehydrogenase complex was required for complete conversion of alpha-ketoisocaproate. Interestingly, during the conversion of the branched-chain alpha-keto acids an intermediate was always detected extracellularly. With alpha-ketoisocaproic acid as the substrate this intermediate was tentatively identified as 1, 1-dihydroxy-4-methyl-2-pentanone. This reduced form of alpha-ketoisocaproic acid was found to serve as a temporary redox sink.

Collaboration


Dive into the Al Claiborne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Luba

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Paul Ross

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie R. Wallen

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge