Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Al Thabiani Aziz is active.

Publication


Featured researches published by Al Thabiani Aziz.


Parasitology International | 2016

Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes.

Anitha Jaganathan; Kadarkarai Murugan; Chellasamy Panneerselvam; Pari Madhiyazhagan; Devakumar Dinesh; Chithravel Vadivalagan; Al Thabiani Aziz; Balamurugan Chandramohan; Udaiyan Suresh; Rajapandian Rajaganesh; Jayapal Subramaniam; Marcello Nicoletti; Akon Higuchi; Abdullah A. Alarfaj; Murugan A. Munusamy; S. Suresh Kumar; Giovanni Benelli

The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.


Research in Veterinary Science | 2016

In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes

Kadarkarai Murugan; Chellasamy Panneerselvam; Christina Mary Samidoss; Pari Madhiyazhagan; Udaiyan Suresh; Mathath Roni; Balamurugan Chandramohan; Jayapal Subramaniam; Devakumar Dinesh; Rajapandian Rajaganesh; Manickam Paulpandi; Hui Wei; Al Thabiani Aziz; Mohamad Saleh Alsalhi; Sandhanasamy Devanesan; Marcello Nicoletti; Roman Pavela; Angelo Canale; Giovanni Benelli

Malaria transmission is a serious emergence in urban and semiurban areas worldwide, becoming a major international public health concern. Malaria is transmitted through the bites of Anopheles mosquitoes. The extensive employ of synthetic pesticides leads to negative effects on human health and the environment. Recently, plant-synthesized nanoparticles have been proposed as highly effective mosquitocides. In this research, we synthesized silver nanoparticles (AgNP) using the Azadirachta indica seed kernel extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectrophotometry, SEM, EDX, XRD and FTIR spectroscopy. The A. indica seed kernel extract was toxic against Anopheles stephensi larvae and pupae, LC50 were 232.8ppm (larva I), 260.6ppm (II), 290.3ppm (III), 323.4ppm (IV), and 348.4ppm (pupa). AgNP LC50 were 3.9ppm (I), 4.9ppm (II), 5.6ppm (III), 6.5ppm (IV), and 8.2ppm (pupa). The antiplasmodial activity of A. indica seed kernel extract and AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of A. indica seed kernel extract were 63.18μg/ml (CQ-s) and 69.24μg/ml (CQ-r). A. indica seed kernel-synthesized AgNP achieved IC50, of 82.41μg/ml (CQ-s) and 86.12μg/ml (CQ-r). However, in vivo anti-plasmodial experiments conducted on Plasmodium berghei infecting albino mice showed moderate activity of the A. indica extract and AgNP. Overall, this study showed that the A. indica-mediated fabrication of AgNP is of interest for a wide array of purposes, ranging from IPM of mosquito vectors to the development of novel and cheap antimalarial drugs.


Parasites & Vectors | 2014

An update on the incidence of dengue gaining strength in Saudi Arabia and current control approaches for its vector mosquito

Al Thabiani Aziz; Salman Abdo Al-Shami; Jazem A. Mahyoub; Mesed Hatabbi; Abu Hassan Ahmad; Che Salmah Md Rawi

BackgroundThe cases of dengue reported earlier in the late 1990s from the Kingdom of Saudi Arabia (KSA) occurred in the cities of Jeddah and Makkah. Although the kingdom has ample financial resources to establish effective control measures for the dengue vector, numerous cases of dengue occur and fluctuate in numbers from year to year. This necessitates a serious review of the current vector control strategies being practiced in order to identify the existing shortcomings. This short report provides an update on epidemiology of dengue in KSA (specifically in cities of Jeddah and Makkah) with a critical look at the current vector control strategies.FindingsIn 2013, 4411 cases of dengue were reported, with 8 cases of mortality. This number of dengue incidence was four times higher compared to 2012. In 2013, the highest number of 1272 dengue cases was reported in May, while the lowest number (37) of cases was reported in September.ConclusionsIt is evident that the control strategies of the dengue vector presently employed are inadequate. There seems to be serious deficiencies in following proper scientific procedures during field application(s) of control materials against the vector as is evident by the increases in the number of dengue cases as well as frequent outbreaks of the vector mosquito populations. In this review, some specific suggestions are made to draw attention to the relevant KSA authorities of the possible reasons behind unsuccessful control results and as to how to improve the strategy of dengue vector control in the kingdom.


Aquatic Toxicology | 2017

Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata

Vasu Sujitha; Kadarkarai Murugan; Devakumar Dinesh; Amuthvalli Pandiyan; Rajasekar Aruliah; Jiang-Shiou Hwang; Kandasamy Kalimuthu; Chellasamy Panneerselvam; Akon Higuchi; Al Thabiani Aziz; S. Suresh Kumar; Abdullah A. Alarfaj; Baskaralingam Vaseeharan; Angelo Canale; Giovanni Benelli

Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.


Parasitology Research | 2016

Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India

Chithravel Vadivalagan; Pushparaj Karthika; Kadarkarai Murugan; Chellasamy Panneerselvam; Manickam Paulpandi; Pari Madhiyazhagan; Hui Wei; Al Thabiani Aziz; Mohamad Saleh Alsalhi; Sandhanasamy Devanesan; Marcello Nicoletti; Rajaiah Paramasivan; Devakumar Dinesh; Giovanni Benelli

Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.


Asian Pacific Journal of Tropical Disease | 2016

Effectiveness of seven mosquito larvicides against the West Nile vector Culex pipiens (L.) in Saudi Arabia

Jazem A. Mahyoub; Alaa Sulaiman Alsobhi; Khalid A. Al-Ghamdi; Najat Ali Khatter; Al Thabiani Aziz; Salman Abdo Al-Shami; Chellasamy Panneerselvam; Kadarkarai Murugan; Marcello Nicoletti; Angelo Canale; Giovanni Benelli

Abstract Objective To explore the effects of different chemical larvicides, bioinsecticides and insect growth regulators against the West Nile vector Culex pipiens (Diptera: Culicidae) ( Cx. pipiens ) in Saudi Arabia. Methods We tested seven commercial mosquito larvicides, including classic cyfluthrin, diazinon and propoxur, bioinsecticides Bactilarvae and Tracer 24%, and insect growth regulators Baycidal and Sumilarv. LC 50 and LC 90 values were calculated in laboratory conditions using probit analysis. Results Concerning chemical insecticides, the highest larval mortality was observed for diazinon, with LC 50 = 0.352 3 mg/L, followed by propoxur and cyfluthrin. The bacterial insecticide Tracer was more effective than Bactilarvae (LC 50 = 0.008 7 mg/L and 0.011 7 mg/L, respectively) by 1.37 folds. Furthermore, Cx. pipiens larvae were more susceptible to insect growth regulators Baycidal (IC 50 = 0.000 4 mg/L) if compared to Sumilarv (IC 50 = 0.002 9 mg/L) by 7.25 folds. Conclusions Overall, this research added basic knowledge about the effectiveness of seven mosquito larvicides with different mechanisms of action as potential candidates for the control programs of Cx. pipiens mosquito populations in Saudi Arabia.


Parasites & Vectors | 2014

Promoting health education and public awareness about dengue and its mosquito vector in Saudi Arabia

Al Thabiani Aziz; Salman Abdo Al-Shami; Jazem A. Mahyoub; Mesed Hatabbi; Abu Hassan Ahmad; Che Salmah Md Rawi

Currently, dengue fever is considered as the main health problem in several parts (Mekkah, Jeddah, Jazan and Najran) of Kingdom of Saudi Arabia (KSA) with dramatically increase in the number of cases reported every year. This is associated with obvious ineffectiveness in the recent control and management programs for the mosquito vector (Aedes aegypti). Here, we suggested promoting the health education and public awareness among Saudi people to improve the control of dengue mosquito vector. Several suggestions and recommendations were highlighted here to ensure effectiveness in the future control and management programs of dengue mosquito vector in KSA.


Journal of Photochemistry and Photobiology B-biology | 2018

The desert wormwood (Artemisia herba-alba) – From Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors

Al Thabiani Aziz; Mohammed Ali Alshehri; Chellasamy Panneerselvam; Kadarkarai Murugan; Subrata Trivedi; Jazem A. Mahyoub; Mo'awia Mukhtar Hassan; Filippo Maggi; Stefania Sut; Stefano Dall'Acqua; Angelo Canale; Giovanni Benelli

The development of eco-friendly and effective insecticides is crucial for public health worldwide. Herein, we focused on the desert wormwood (Artemisia herba-alba), a plant widely used in Arabian traditional medicine, as a source of green nanoinsecticides against mosquito vectors, as well as growth inhibitors to be employed against microbial pathogens. Ag nanoparticles (AgNPs) fabricated with the A. herba-alba extract were tested on Indian and Saudi Arabian strains of Anopheles, Aedes and Culex mosquitoes. The chemical profile of the A. herba-alba extract was determined by LC-DAD-MS and 1H NMR studies. Then, AgNPs were studied using UV-vis spectroscopy, XRD, FTIR spectroscopy, TEM, and EDX analyses. Artemisia herba-alba-synthesized AgNPs showed high larvicidal toxicity against mosquitoes from both Indian and Saudi Arabian strains. LC50 of AgNPs against Indian strains was 9.76 μg/ml for An. stephensi, 10.70 μg/ml for Ae. aegypti and 11.43 μg/ml for Cx. quinquefasciatus, whereas against Saudi Arabian strains it was 33.58 μg/ml for Ae. aegypti and 38.06 μg/ml for Cx. pipiens. In adulticidal experiments, A. herba-alba extract showed LC50 ranging from 293.02 to 450 μg/ml, while AgNP LC50 ranged from 8.22 to 27.39 μg/ml. Further, low doses of the AgNPs inhibited the growth of selected microbial pathogens. Overall, A. herba-alba can be further considered as a source of phytochemicals, with special reference to saponins, for effective and prompt fabrication of AgNPs with relevant insecticidal and bactericidal activity against species of high public health importance.


Parasitology Research | 2016

Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity

Chellasamy Panneerselvam; Kadarkarai Murugan; Mathath Roni; Al Thabiani Aziz; Udaiyan Suresh; Rajapandian Rajaganesh; Pari Madhiyazhagan; Jayapal Subramaniam; Devakumar Dinesh; Marcello Nicoletti; Akon Higuchi; Abdullah A. Alarfaj; Murugan A. Munusamy; S. Suresh Kumar; Nicolas Desneux; Giovanni Benelli


Parasitology Research | 2016

Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies

Balamurugan Chandramohan; Kadarkarai Murugan; Chellasamy Panneerselvam; Pari Madhiyazhagan; Devakumar Dinesh; Palanisamy Mahesh Kumar; Kalimuthu Kovendan; Udaiyan Suresh; Jayapal Subramaniam; Rajapandian Rajaganesh; Al Thabiani Aziz; Ban Syuhei; Mohamad Saleh Alsalhi; Sandhanasamy Devanesan; Marcello Nicoletti; Hui Wei; Giovanni Benelli

Collaboration


Dive into the Al Thabiani Aziz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcello Nicoletti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akon Higuchi

National Central University

View shared research outputs
Researchain Logo
Decentralizing Knowledge