Ala Yaromina
Maastricht University Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ala Yaromina.
Radiotherapy and Oncology | 2010
Ulrike Sattler; Sandra S. Meyer; Verena Quennet; Christian Hoerner; Hannah Knoerzer; Christian G. Fabian; Ala Yaromina; Daniel Zips; Stefan Walenta; Michael Baumann; Wolfgang Mueller-Klieser
BACKGROUND AND PURPOSE To study whether pre-therapeutic lactate or pyruvate predict for tumour response to fractionated irradiation and to identify possible coherencies between intermediates of glycolysis and expression levels of selected proteins. MATERIALS AND METHODS Concentrations of lactate, pyruvate, glucose and ATP were quantified via bioluminescence imaging in tumour xenografts derived from 10 human head and neck squamous cell carcinoma (HNSCC) lines. Tumours were irradiated with 30 fractions within 6 weeks. Expression levels of the selected proteins in tumours were measured at the mRNA and protein level. Tumour-infiltrating leucocytes were quantified after staining for CD45. RESULTS Lactate but not pyruvate concentrations were significantly correlated with tumour response to fractionated irradiation. Lactate concentrations in vivo did not reflect lactate production rates in vitro. Metabolite concentrations did not correlate with GLUT1, PFK-L or LDH-A at the transcriptional or protein level. CD45-positive cell infiltration was low in the majority of tumours and did not correlate with lactate concentration. CONCLUSIONS Our data support the hypothesis that the antioxidative capacity of lactate may contribute to radioresistance in malignant tumours. Non-invasive imaging of lactate to monitor radiation response and testing inhibitors of glycolysis to improve outcome after fractionated radiotherapy warrant further investigations.
Radiotherapy and Oncology | 2010
Ala Yaromina; Howard D. Thames; Xuanjing Zhou; Sandra Hering; Wolfgang Eicheler; Annegret Dörfler; Thomas Leichtner; Daniel Zips; Michael Baumann
OBJECTIVE To investigate the relationships between radiobiological hypoxic fraction (rHF), pimonidazole hypoxic fraction (pHF) as well as other histological parameters of the tumour microenvironment, and local tumour control after fractionated irradiation in human squamous cell carcinomas (hSCCs). MATERIAL AND METHODS Ten different hSCC cell lines were transplanted into nude mice and rHF was calculated from local tumour control rates after single dose irradiation under normal or clamped blood flow conditions. In parallel, tumours were irradiated with 30 fractions within 6 weeks. Radiation response was quantified as dose required to cure 50% of tumours (TCD(50)). Unirradiated tumours were excised for histological evaluation including relative hypoxic area (pHF), relative vascular area (RVA), and fraction of perfused vessels (PF). RESULTS A weak but significant positive correlation between rHF (R(2)=0.6, p=0.014) and TCD(50) after fractionated irradiation was found. The pHF did not correlate with rHF but was significantly associated with the TCD(50) after single dose clamp (R(2)=0.8, p=0.003) and showed a trend for an association with TCD(50) after fractionated irradiation (R(2)=0.4, p=0.067). Relative vascular area and fraction of perfused vessels did not show an association with rHF or TCD(50) after fractionated irradiation. CONCLUSIONS Our data suggest that radiobiological hypoxia contributes to the response after fractionated irradiation but that also other radiobiological mechanisms are involved. In the present study, pimonidazole labelling does not reflect rHF and has a limited value to predict local tumour control after fractionated irradiation. The association between pHF and TCD(50) after single dose clamp warrants further investigation.
International Journal of Radiation Biology | 2009
Apostolos Menegakis; Ala Yaromina; Wolfgang Eicheler; Annegret Dörfler; Bettina Beuthien-Baumann; Howard D. Thames; Michael Baumann; Mechthild Krause
Purpose: To assess the potential of using the residual phosphorylation of histone H2AX (γH2AX) after irradiation as a marker of radiosensitivity in vitro. Material and methods: Confluent cell cultures of FaDu and SKX human squamous cell carcinoma lines were irradiated with graded single doses. Twenty-four hours after irradiation cells were seeded for standard colony forming assay (CFA). In parallel, staining for γH2AX was performed to visualise the residual foci. Results: In the CFA, FaDu showed a higher radioresistance than SKX. After analysis of the residual foci data, we constructed ‘predicted’ survival curves using two different methods. First, the proportion of nuclei with <3 foci was found to correlate closely with the observed surviving fraction (SF) in FaDu, with a slight overestimation of the true SF in SKX. Second, there was a strong linear correlation of the mean number of residual foci and observed −lnSF. Based on regression analysis, we calculated the SF for both cell lines based on the mean number of residual γH2AX foci. This second approach again led to a good correlation of predicted and observed SF values in FaDu and a (slight) overestimation in SKX. Conclusion: In the two cell lines investigated the mean number of residual foci of γH2AX can be used to predict differences in the radiation dose response relationship in vitro.
Clinical Cancer Research | 2011
Mechthild Krause; Ala Yaromina; Wolfgang Eicheler; Ulrike Koch; Michael Baumann
Cancer stem cells (CSC) have the unique ability to cause tumor recurrences if they survive treatment. Radiotherapy has curative potential because it has been functionally shown to sufficiently inactivate CSCs. It is well known that CSCs mediate the radiation resistance of tumors by tumor-specific factors, such as the pretreatment number of CSCs and repopulation or reoxygenation during fractionated radiotherapy. CSCs appear to have a higher intrinsic radioresistance than non-CSCs, a factor that is especially important for the development of predictive biomarkers that, if this finding holds true, can only be successfully established if they are stem-cell specific. Recent clinical data imply that stem-cell–related surface markers may be directly used as predictors for the radiocurability of tumors with comparable risk factors, such as histology and size. Future studies need to address the question of which additional markers need to be considered if more heterogeneous patient collectives are investigated. With the goal of developing a direct targeting approach, investigators are currently evaluating several drugs that are intended to target CSCs by inhibiting stem-cell–related signal transduction pathways. We need to preclinically test such drugs as combined-modality therapies in combination with radiotherapy to evaluate their curative potential, and optimize them by increasing their specificity to CSCs over normal tissue stem cells to avoid increased radiation toxicity. Clin Cancer Res; 17(23); 7224–9. ©2011 AACR.
Radiotherapy and Oncology | 2011
Kristin Gurtner; Yvonne Deuse; Rebecca Bütof; Katja Schaal; Wolfgang Eicheler; Reinhard Oertel; Reidar Grénman; Howard D. Thames; Ala Yaromina; Michael Baumann; Mechthild Krause
PURPOSE To compare functional effects of combined irradiation and EGFR inhibition in different HNSCC tumour models in vivo with the results of molecular evaluations, aiming to set a basis for the development of potential biomarkers for local tumour control. MATERIAL AND METHODS In five HNSCC tumour models, all wild-type for EGFR and KRAS, the effect of radiotherapy alone (30 fractions/6 weeks) and with simultaneous cetuximab or erlotinib treatment on local tumour control were evaluated and compared with molecular data on western blot, immunohistochemistry and fluorescence-in situ-hybridisation (FISH). RESULTS Erlotinib and cetuximab alone significantly prolonged tumour growth time in 4/5 tumour models. Combined irradiation and cetuximab treatment significantly improved local tumour control in 3/5 tumour models, whereas erlotinib did not alter local tumour control in any of the tumour models. The amount of the cetuximab-effect on local tumour control significantly correlated with the EGFR/CEP-7 ratios obtained by FISH. CONCLUSION Both drugs prolonged growth time in most tumour models, but only application of cetuximab during irradiation significantly improved local tumour control in 3/5 tumour models. The significant correlation of this curative effect with the genetic EGFR expression measured by FISH will be further validated in preclinical and clinical studies.
International Journal of Radiation Oncology Biology Physics | 2011
Ala Yaromina; Theresa Kroeber; Andreas Meinzer; Simon Boeke; Howard D. Thames; Michael Baumann; Daniel Zips
PURPOSE To explore the prognostic value of microenvironmental parameters for local tumor control determined before and during fractionated irradiation. METHODS AND MATERIALS Six human squamous cell carcinoma (hSCC) lines were transplanted subcutaneously into the right hind leg of nude mice. Tumors were irradiated with 30 fractions within 6 weeks. Local tumor control was determined 120 days after irradiation. Radiation response was quantified as dose to cure 50% of tumors (TCD(50)). In parallel, untreated and irradiated tumors were excised after injection of pimonidazole (hypoxia marker) and Hoechst 33342 (perfusion marker) for histological evaluation. RESULTS Pimonidazole hypoxia decreased during fractionated irradiation in the majority of tumor lines. Fraction of perfused vessels and vascular area showed modest changes during fractionated irradiation. Histological parameters before treatment and after three and five fractions did not significantly correlate with TCD(50) after irradiation with 30 fractions within 6 weeks (p > 0.05). Hypoxic volume and perfused vessels after 10 fractions showed a significant association with local tumor control after fractionated irradiation (p = 0.018 and p = 0.019, respectively). None of these parameters remained statistically significant when the p value was adjusted for multiple comparisons. CONCLUSIONS The results from this exploratory study suggest that determination of microenvironmental parameters during treatment provides better prognostic information for the outcome after fractionated radiotherapy than pretreatment parameters, which warrants further investigation and confirmation in experimental and clinical studies.
International Journal of Radiation Biology | 2009
Ala Yaromina; Verena Quennet; Daniel Zips; Sandra S. Meyer; Georgy Shakirin; Stefan Walenta; Wolfgang Mueller-Klieser; Michael Baumann
Purpose: To examine relationships between tumour hypoxia, perfusion and metabolic microenvironment at the microregional level in three different human squamous cell carcinomas (hSCC). Materials and methods: Nude mice bearing FaDu, UT-SCC-15, and UT-SCC-5 hSCC were injected with pimonidazole hypoxia and Hoechst perfusion markers. Bioluminescence imaging was used to determine spatial distribution of glucose and lactate content in serial tumour sections. Metabolite levels were grouped in 10 concentration ranges. Images were co-registered and at each concentration range the proportion of area stained for pimonidazole and Hoechst was determined in 11–13 tumours per tumour line. Results: The spatial distribution of metabolites in pimonidazole hypoxic and Hoechst perfused areas is characterised by pronounced heterogeneity. In all three tumour lines glucose concentration decreased with increasing pimonidazole hypoxic fraction and increased with increasing perfused area at the microregional level. A weak albeit significant positive correlation between lactate concentration and pimonidazole hypoxic fraction was found only in UT-SCC-5. Lactate concentration consistently decreased with increasing perfused area in all three tumour lines. Conclusions: Both glucose consumption and supply may contribute to the microregional glucose levels. Microregional lactate accumulation in tumours may be governed by clearance potential. The extent of microregional hypoxia cannot be predicted from the lactate concentration indicating that both parameters need to be measured independently.
Clinical Cancer Research | 2015
Sarah G.J.A. Peeters; C.M.L. Zegers; Rianne Biemans; Natasja G. Lieuwes; Ruud G.P.M. van Stiphout; Ala Yaromina; Jessica Sun; Charles P. Hart; Albert D. Windhorst; Wouter van Elmpt; Ludwig Dubois; Philippe Lambin
Purpose: Conventional anticancer treatments are often impaired by the presence of hypoxia. TH-302 selectively targets hypoxic tumor regions, where it is converted into a cytotoxic agent. This study assessed the efficacy of the combination treatment of TH-302 and radiotherapy in two preclinical tumor models. The effect of oxygen modification on the combination treatment was evaluated and the effect of TH-302 on the hypoxic fraction (HF) was monitored using [18F]HX4-PET imaging and pimonidazole IHC stainings. Experimental Design: Rhabdomyosarcoma R1 and H460 NSCLC tumor-bearing animals were treated with TH-302 and radiotherapy (8 Gy, single dose). The tumor oxygenation status was altered by exposing animals to carbogen (95% oxygen) and nicotinamide, 21% or 7% oxygen breathing during the course of the treatment. Tumor growth and treatment toxicity were monitored until the tumor reached four times its start volume (T4×SV). Results: Both tumor models showed a growth delay after TH-302 treatment, which further increased when combined with radiotherapy (enhancement ratio rhabdomyosarcoma 1.23; H460 1.49). TH-302 decreases the HF in both models, consistent with its hypoxia-targeting mechanism of action. Treatment efficacy was dependent on tumor oxygenation; increasing the tumor oxygen status abolished the effect of TH-302, whereas enhancing the HF enlarged TH-302′s therapeutic effect. An association was observed in rhabdomyosarcoma tumors between the pretreatment HF as measured by [18F]HX4-PET imaging and the T4×SV. Conclusions: The combination of TH-302 and radiotherapy is promising and warrants clinical testing, preferably guided by the companion biomarker [18F]HX4 hypoxia PET imaging for patient selection. Clin Cancer Res; 21(13); 2984–92. ©2015 AACR.
Radiotherapy and Oncology | 2013
Maher Soliman; Ala Yaromina; Steffen Appold; Daniel Zips; Carsten Reiffenstuhl; Andreas Schreiber; Howard D. Thames; Mechthild Krause; Michael Baumann
PURPOSE To evaluate the impact of fractionation schedule on the size of the gross tumour volume (GTV) effect on tumour control after radiotherapy of NSCLC. MATERIAL AND METHODS A subgroup analysis on 163 patients treated in a randomized phase III trial of CHARTWEL (continuous hyperfractionated accelerated radiotherapy-weekend less) vs conventional radiotherapy was performed. The influence of GTV and other baseline factors on local failure (LF), disease-free survival (DFS), distant metastases (DM), and overall survival (OS) was estimated using the Cox Proportional Hazards model. RESULTS Superior local control was achieved by CHARTWEL compared to conventional radiotherapy (HR 0.54, p=0.015). The hazard of LF increased with increasing GTV for both conventional fractionation and CHARTWEL, however the increase for the latter was less pronounced and not significant. CONCLUSION Highly accelerated CHARTWEL treatment was significantly more effective than conventional radiotherapy for locoregional control of NSCLC. GTV had a significant effect on locoregional control after conventional fractionation, an effect that was not significant with CHARTWEL. This is the first study to demonstrate that the magnitude of the time factor of fractionated radiotherapy increases with tumour volume.
Molecular Oncology | 2012
Ala Yaromina; Mechthild Krause; Michael Baumann
Radiotherapy is today used in about 50% of all cancer patients, often in multidisciplinary approaches. With major advance in radiotherapy techniques, increasing knowledge on tumor genetics and biology and the continuous introduction of specifically targeted drugs into combined radio‐oncological treatment schedules, individualization of radiotherapy is of high priority to further improve treatment outcomes, i.e. to increase long‐term tumor cure and/or to reduce chronic treatment toxicity. This review gives an overview on the importance of predictive biomarkers for the field of radiation oncology. The current status of knowledge on potential biomarkers of tumor hypoxia, tumor cell metabolism, DNA repair, cancer stem cells and biomarkers for combining radiotherapy with inhibition of the epidermal growth factor receptor using monoclonal antibodies is described.