Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Barrat is active.

Publication


Featured researches published by Alain Barrat.


Proceedings of the National Academy of Sciences of the United States of America | 2004

The architecture of complex weighted networks

Alain Barrat; Marc Barthelemy; Romualdo Pastor-Satorras; Alessandro Vespignani

Networked structures arise in a wide array of different contexts such as technological and transportation infrastructures, social phenomena, and biological systems. These highly interconnected systems have recently been the focus of a great deal of attention that has uncovered and characterized their topological complexity. Along with a complex topological structure, real networks display a large heterogeneity in the capacity and intensity of the connections. These features, however, have mainly not been considered in past studies where links are usually represented as binary states, i.e., either present or absent. Here, we study the scientific collaboration network and the world-wide air-transportation network, which are representative examples of social and large infrastructure systems, respectively. In both cases it is possible to assign to each edge of the graph a weight proportional to the intensity or capacity of the connections among the various elements of the network. We define appropriate metrics combining weighted and topological observables that enable us to characterize the complex statistical properties and heterogeneity of the actual strength of edges and vertices. This information allows us to investigate the correlations among weighted quantities and the underlying topological structure of the network. These results provide a better description of the hierarchies and organizational principles at the basis of the architecture of weighted networks.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The role of the airline transportation network in the prediction and predictability of global epidemics

Vittoria Colizza; Alain Barrat; Marc Barthelemy; Alessandro Vespignani

The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large scale hetero geneities and unbounded statistical fluctuations. These features affect dramatically the be havior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this paper, we investigate the role of the large scale properties of the airline transportation network in determining the global evolution of emerging disease. We present a stochastic computational framework for the forecast of global epidemics that considers the complete world-wide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: i) We study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; ii) We evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticit y of disease transmission and traffic flows. In order to address these issues we define a set of novel q uantitative measures able to characterize the level of heterogeneity and predictabil ity of the epidemic pattern. These


PLOS Medicine | 2007

Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions

Vittoria Colizza; Alain Barrat; Marc Barthelemy; Alain-Jacques Valleron; Alessandro Vespignani

Background The highly pathogenic H5N1 avian influenza virus, which is now widespread in Southeast Asia and which diffused recently in some areas of the Balkans region and Western Europe, has raised a public alert toward the potential occurrence of a new severe influenza pandemic. Here we study the worldwide spread of a pandemic and its possible containment at a global level taking into account all available information on air travel. Methods and Findings We studied a metapopulation stochastic epidemic model on a global scale that considers airline travel flow data among urban areas. We provided a temporal and spatial evolution of the pandemic with a sensitivity analysis of different levels of infectiousness of the virus and initial outbreak conditions (both geographical and seasonal). For each spreading scenario we provided the timeline and the geographical impact of the pandemic in 3,100 urban areas, located in 220 different countries. We compared the baseline cases with different containment strategies, including travel restrictions and the therapeutic use of antiviral (AV) drugs. We investigated the effect of the use of AV drugs in the event that therapeutic protocols can be carried out with maximal coverage for the populations in all countries. In view of the wide diversity of AV stockpiles in different regions of the world, we also studied scenarios in which only a limited number of countries are prepared (i.e., have considerable AV supplies). In particular, we compared different plans in which, on the one hand, only prepared and wealthy countries benefit from large AV resources, with, on the other hand, cooperative containment scenarios in which countries with large AV stockpiles make a small portion of their supplies available worldwide. Conclusions We show that the inclusion of air transportation is crucial in the assessment of the occurrence probability of global outbreaks. The large-scale therapeutic usage of AV drugs in all hit countries would be able to mitigate a pandemic effect with a reproductive rate as high as 1.9 during the first year; with AV supply use sufficient to treat approximately 2% to 6% of the population, in conjunction with efficient case detection and timely drug distribution. For highly contagious viruses (i.e., a reproductive rate as high as 2.3), even the unrealistic use of supplies corresponding to the treatment of approximately 20% of the population leaves 30%–50% of the population infected. In the case of limited AV supplies and pandemics with a reproductive rate as high as 1.9, we demonstrate that the more cooperative the strategy, the more effective are the containment results in all regions of the world, including those countries that made part of their resources available for global use.


Physical Review Letters | 2004

Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks

Marc Barthelemy; Alain Barrat; Romualdo Pastor-Satorras; Alessandro Vespignani

We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.


PLOS ONE | 2010

Dynamics of person-to-person interactions from distributed RFID sensor networks.

Ciro Cattuto; Wouter Van den Broeck; Alain Barrat; Vittoria Colizza; Jean-François Pinton; Alessandro Vespignani

Background Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. Methods and Findings We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. Conclusions Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.


Journal of Theoretical Biology | 2011

What's in a crowd? Analysis of face-to-face behavioral networks

Lorenzo Isella; Juliette Stehlé; Alain Barrat; Ciro Cattuto; Jean-François Pinton; Wouter Van den Broeck

The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition. We track the behavioral networks of face-to-face proximity, and characterize them from both a static and a dynamic point of view, exposing differences and similarities. We use our data to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different for the conference and the museum case, and they are strongly impacted by the causal structure of the network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated networks would lead to erroneous conclusions about the transmission paths on the dynamical networks.


PLOS ONE | 2011

High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School

Juliette Stehlé; Nicolas Voirin; Alain Barrat; Ciro Cattuto; Lorenzo Isella; Jean-François Pinton; Marco Quaggiotto; Wouter Van den Broeck; Corinne Régis; Bruno Lina; Philippe Vanhems

Background Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6–12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Methods and Findings Data on face-to-face interactions were collected on Thursday, October 1st and Friday, October 2nd 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. Conclusions We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.


Physica A-statistical Mechanics and Its Applications | 2005

Characterization and modeling of weighted networks

Marc Barthelemy; Alain Barrat; Romualdo Pastor-Satorras; Alessandro Vespignani

We review the main tools which allow for the statistical characterization of weighted networks. We then present two case studies, the airline connection network and the scientific collaboration network which are representatives of critical infrastructure and social system, respectively. The main empirical results are (i) the broad distributions of various quantities and (ii) the existence of weight-topology correlations. These measurements show that weights are relevant and that in general the modeling of complex networks must go beyond topology. We review a model which provides an explanation for the features observed in several real-world networks. This model of weighted network formation relies on the dynamical coupling between topology and weights, considering the rearrangement of new links are introduced in the system.


BMC Medicine | 2011

Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

Juliette Stehlé; Nicolas Voirin; Alain Barrat; Ciro Cattuto; Vittoria Colizza; Lorenzo Isella; Corinne Régis; Jean-François Pinton; Nagham Khanafer; Wouter Van den Broeck; Philippe Vanhems

BackgroundThe spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population.MethodsWe considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects.ResultsWe show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic.ConclusionsThese results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics.Please see related article BMC Medicine, 2011, 9:88


ACM Transactions on The Web | 2012

Friendship prediction and homophily in social media

Luca Maria Aiello; Alain Barrat; Rossano Schifanella; Ciro Cattuto; Benjamin Markines; Filippo Menczer

Social media have attracted considerable attention because their open-ended nature allows users to create lightweight semantic scaffolding to organize and share content. To date, the interplay of the social and topical components of social media has been only partially explored. Here, we study the presence of homophily in three systems that combine tagging social media with online social networks. We find a substantial level of topical similarity among users who are close to each other in the social network. We introduce a null model that preserves user activity while removing local correlations, allowing us to disentangle the actual local similarity between users from statistical effects due to the assortative mixing of user activity and centrality in the social network. This analysis suggests that users with similar interests are more likely to be friends, and therefore topical similarity measures among users based solely on their annotation metadata should be predictive of social links. We test this hypothesis on several datasets, confirming that social networks constructed from topical similarity capture actual friendship accurately. When combined with topological features, topical similarity achieves a link prediction accuracy of about 92%.

Collaboration


Dive into the Alain Barrat's collaboration.

Top Co-Authors

Avatar

Ciro Cattuto

Institute for Scientific Interchange

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Barthelemy

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vittorio Loreto

Institute for Scientific Interchange

View shared research outputs
Top Co-Authors

Avatar

Vittoria Colizza

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romualdo Pastor-Satorras

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Wouter Van den Broeck

Institute for Scientific Interchange

View shared research outputs
Top Co-Authors

Avatar

Andrea Puglisi

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge