Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Baudry is active.

Publication


Featured researches published by Alain Baudry.


Publications of the Astronomical Society of the Pacific | 2011

Water in Star-forming Regions with the Herschel Space Observatory (WISH). I. Overview of Key Program and First Results

E. F. van Dishoeck; L. E. Kristensen; Arnold O. Benz; Edwin A. Bergin; P. Caselli; J. Cernicharo; Fabrice Herpin; M. R. Hogerheijde; D. Johnstone; R. Liseau; B. Nisini; R. Shipman; M. Tafalla; F. F. S. van der Tak; F. Wyrowski; Yuri Aikawa; R. Bachiller; Alain Baudry; M. Benedettini; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; C. Brinch; S. Bruderer; L. Chavarria; C. Codella; F. Daniel; Th. de Graauw; E. Deul

Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.


Astronomy and Astrophysics | 2008

Dense gas in luminous infrared galaxies

Willem A. Baan; C. Henkel; A. F. Loenen; Alain Baudry; Tommy Wiklind

Aims. Molecules that trace the high-density regions of the interstellar medium have been observed in (ultra-) luminous (far-) infrared galaxies, in order to initiate multiple-molecule multiple-transition studies to evaluate the physical and chemical environment of the nuclear medium and its response to the ongoing nuclear activity. Methods. The HCN(1-0), HNC(1-0), HCO+ (1-0), CN(1-0) and CN(2-1), CO(2-1), and CS(3-2) transitions were observed in sources covering three decades of infrared luminosity including sources with known OH megamaser activity. The data for the molecules that trace the high-density regions were augmented with data available in the literature. Results. The integrated emissions of high-density tracer molecules show a strong relation to the far-infrared luminosity. Ratios of integrated line luminosities were used for a first-order diagnosis of the integrated molecular environment of the evolving nuclear starbursts. Diagnostic diagrams display significant differentiation among the sources that relate to the initial conditions and the radiative excitation environment. Initial differentiation was introduced between the FUV radiation field in photon-dominated-regions and the X-ray field in X-ray-dominated-regions. The galaxies displaying OH megamaser activity have line ratios typical of photon-dominated regions.


Astronomy and Astrophysics | 2010

Water cooling of shocks in protostellar outflows: Herschel-PACS map of L1157

B. Nisini; M. Benedettini; C. Codella; T. Giannini; R. Liseau; David A. Neufeld; M. Tafalla; E. F. van Dishoeck; R. Bachiller; Alain Baudry; Arnold O. Benz; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; S. Bruderer; P. Caselli; J. Cernicharo; F. Daniel; P. Encrenaz; A. M. di Giorgio; C. Dominik; S. D. Doty; Michel Fich; A. Fuente; J. R. Goicoechea; Th. de Graauw; Frank Helmich; Gregory J. Herczeg

Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims. In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 mu m transition obtained toward the young outflow L1157. Methods. The 179 mu m map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 mu m emission is spatially correlated with emission from H-2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 mu m intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10(-4). This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is similar to 10(-1) L-circle dot, about 40% of the cooling due to H-2 and 23% of the total energy released in shocks along the L1157 outflow.


Astronomy and Astrophysics | 2010

Herschel spectral surveys of star-forming regions - Overview of the 555–636 GHz range

C. Ceccarelli; A. Bacmann; A. C. A. Boogert; E. Caux; C. Dominik; B. Lefloch; Dariusz C. Lis; P. Schilke; F. F. S. van der Tak; P. Caselli; J. Cernicharo; C. Codella; C. Comito; A. Fuente; Alain Baudry; T. A. Bell; M. Benedettini; Edwin A. Bergin; Geoffrey A. Blake; Sandrine Bottinelli; S. Cabrit; A. Castets; A. Coutens; N. Crimier; K. Demyk; P. Encrenaz; E. Falgarone; M. Gerin; Paul F. Goldsmith; Frank Helmich

High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project “Chemical HErschel Surveys of Star forming regions”, CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 × 105 L_ȯ: L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence/absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Figures [see full textsee full text]-[see full textsee full text] and Tables 3, 4 (pages 6 to 8) are only available in electronic form at http://www.aanda.org


Astronomy and Astrophysics | 2006

Full polarization study of SiO masers at 86 GHz

Fabrice Herpin; Alain Baudry; Clemens Thum; Dave Morris; Helmut Wiesemeyer

Aims. We study the polarization of the SiO maser emission in a representative sample of evolved stars in order to derive an estimate of the strength of the magnetic field, and thus determine the influence of this magnetic field on evolved stars. Methods. We made simultaneous spectroscopic measurements of the 4 Stokes parameters, from which we derived the circular and linear polarization levels. The observations were made with the IF polarimeter installed at the IRAM 30 m telescope. Results. A discussion of the existing SiO maser models is developed in the light of our observations. Under the Zeeman splitting hypothesis, we derive an estimate of the strength of the magnetic field. The averaged magnetic field varies between 0 and 20 Gauss, with a mean value of 3.5 Gauss, and follows a 1/r law throughout the circumstellar envelope. As a consequence, the magnetic field may play the role of a shaping, or perhaps collimating, agent of the circumstellar envelopes in evolved objects.


Astronomy and Astrophysics | 2011

HCOOCH3 as a probe of temperature and structure in Orion-KL

C. Favre; Didier Despois; N. Brouillet; Alain Baudry; F. Combes; M. Guelin; Alwyn Wootten; G. Wlodarczak

Context. The Orion Kleinmann-Low nebula (Orion-KL) is a complex region of star formation. Whereas its proximity allows studies on a scale of a few hundred AU, spectral confusion makes it difficult to identify molecules with low abundances. Aims: We studied an important oxygenated molecule, HCOOCH3, to characterize the physical conditions, temperature, and density of the different molecular source components. Methyl formate presents strong close rotational transitions covering a wide range of energy, and its emission in Orion-KL is not contaminated by the emission of N-bearing molecules. This study will help in the future 1) to constrain chemical models for the formation of methyl formate in gas phase or on grain mantles and 2) to search for more complex or prebiotic molecules. Methods: We used high-resolution observations from the IRAM Plateau de Bure Interferometer to reduce spectral confusion and to better isolate the molecular emission regions. We used twelve data sets with a spatial resolution down to 1.8″ × 0.8″. Continuum emission was subtracted by selecting apparently line-free channels. Results: We identify 28 methyl formate emission peaks throughout the 50″ field of observations. The two strongest peaks, named MF1 and MF2, are in the Compact Ridge and in the southwest of the Hot Core, respectively. From a comparison with single-dish observations, we estimate that we miss less than 15% of the flux and that spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position in the Compact Ridge we find a temperature of 80 K in a 1.8″ × 0.8″ beam size and 120 K on a larger scale (3.6″ × 2.2″), suggesting an external source of heating, whereas the temperature is about 130 K at the MF2 position on both scales. Transitions of methyl formate in its first torsionally excited state are detected as well, and the good agreement of the positions on the rotational diagrams between the ground state and the vt = 1 transitions suggests a similar temperature. The LSR velocity of the gas is between 7.5 and 8.0 km s-1 depending on the positions and column density peaks vary from 1.6 × 1016 to 1.6 × 1017 cm-2. A second velocity component is observed around 9-10 km s-1 in a north-south structure stretching from the Compact Ridge up to the BN object, and this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected, and the derived upper limit for the column density is ≤3 × 1014 cm-2 for glycolaldehyde and ≤2 × 1015 cm-2 for acetic acid. From the 223 GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8 Ms. Assuming that the methyl formate is spatially distributed as the dust is, we find relative abundances of methyl formate in the range ≤0.1 × 10-8 to 5.2 × 10-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 μm H2 emission. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).A fits image of the HCOOCH3 integrated intensity map (Fig. 4) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A32. All spectra can be obtained upon request to the authors.Table 10 and Appendix A are available in electronic form at http://www.aanda.org


Astronomy and Astrophysics | 2010

Hydrides in young stellar objects: Radiation tracers in a protostar-disk-outflow system

Arnold O. Benz; S. Bruderer; E. F. van Dishoeck; P. Stäuber; S. F. Wampfler; M. Melchior; C. Dedes; F. Wyrowski; S. D. Doty; F. F. S. van der Tak; W. Bächtold; Andre Csillaghy; A. Megej; C. Monstein; M. Soldati; R. Bachiller; Alain Baudry; M. Benedettini; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; P. Caselli; J. Cernicharo; C. Codella; F. Daniel; A. M. di Giorgio; P. Dieleman; C. Dominik

Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods. W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (� 2500 s) in 8 spectral regions. Results. The target lines including CH, NH, H3O + , and the new molecules SH + ,H 2O + ,a nd OH + are detected. The H2O + and OH + J = 1−0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O + and OH + also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions. The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation.


Astronomy and Astrophysics | 2010

Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region

U. A. Yıldız; E. F. van Dishoeck; L. E. Kristensen; R. Visser; Jes K. Jørgensen; Gregory J. Herczeg; T. A. van Kempen; M. R. Hogerheijde; S. D. Doty; Arnold O. Benz; S. Bruderer; S. F. Wampfler; E. Deul; R. Bachiller; Alain Baudry; M. Benedettini; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; P. Caselli; J. Cernicharo; C. Codella; F. Daniel; A. M. di Giorgio; C. Dominik; P. Encrenaz; Michel Fich; A. Fuente

Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The 12CO 10-9 profiles are dominated by broad (FWHM 25-30 km s^-1) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and 13CO line profiles also reveal a medium-broad component (FWHM 5-10 km s^-1), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow C18O 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.


Astronomy and Astrophysics | 2010

Water in massive star-forming regions: HIFI observations of W3 IRS5

L. Chavarria; Fabrice Herpin; T. Jacq; J. Braine; Sylvain Bontemps; Alain Baudry; M. Marseille; van der Floris Tak; B. Pietropaoli; F. Wyrowski; Russel Shipman; W. Frieswijk; E. F. van Dishoeck; J. Cernicharo; R. Bachiller; M. Benedettini; Arnold O. Benz; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; S. Bruderer; P. Caselli; C. Codella; F. Daniel; A. M. di Giorgio; C. Dominik; S. D. Doty; P. Encrenaz; Michel Fich; A. Fuente

We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22 202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T > 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O 111-000 spectra in our models. We estimate water abundances of 10^{-8} to 10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two protostellar objects contributing to the emission is discussed.


Astronomy and Astrophysics | 2010

Nitrogen hydrides in the cold envelope of IRAS 16293-2422

Pierre Hily-Blant; S. Maret; A. Bacmann; S. Bottinelli; B. Parise; E. Caux; A. Faure; Edwin A. Bergin; Geoffrey A. Blake; A. Castets; C. Ceccarelli; J. Cernicharo; A. Coutens; N. Crimier; K. Demyk; C. Dominik; M. Gerin; Patrick Hennebelle; T. Henning; C. Kahane; A. Klotz; Gary J. Melnick; L. Pagani; P. Schilke; C. Vastel; Valentine Wakelam; A. Walters; Alain Baudry; T. A. Bell; M. Benedettini

Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS 16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78 THz at high spectral resolution. The hyperfine structure of the amidogen radical o-NH2 is resolved and seen in absorption against the continuum of the protostar. Several transitions of ammonia from 1.2 to 1.8 THz are also seen in absorption. These lines trace the low-density envelope of the protostar. Column densities and abundances are estimated for each hydride. We find that NH:NH2:NH3 ≈ 5:1:300. Dark clouds chemical models predict steady-state abundances of NH2 and NH3 in reasonable agreement with the present observations, whilst that of NH is underpredicted by more than one order of magnitude, even using updated kinetic rates. Additional modelling of the nitrogen gas-phase chemistry in dark-cloud conditions is necessary before having recourse to heterogen processes. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Appendices (pages 6, 7) are only available in electronic form at http://www.aanda.org

Collaboration


Dive into the Alain Baudry's collaboration.

Top Co-Authors

Avatar

J. Cernicharo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Herpin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Geoffrey A. Blake

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sylvain Bontemps

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Braine

University of Bordeaux

View shared research outputs
Researchain Logo
Decentralizing Knowledge