Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Botta is active.

Publication


Featured researches published by Alain Botta.


Nanotoxicology | 2009

CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro

Mélanie Auffan; Jérôme Rose; T. Orsière; Michel De Méo; Antoine Thill; Ophélie Zeyons; Olivier Proux; Armand Masion; Perrine Chaurand; Olivier Spalla; Alain Botta; Mark R. Wiesner; Jean-Yves Bottero

Cerium dioxide nanoparticles have been proposed for an increasing number of applications in biomedicine, cosmetic, as polishing materials and also as byproducts from automotive fuel additives. The aim of this study was to examine the potential in vitro cyto- and genotoxicity of nano-sized CeO2 (7 nm) on human dermal fibroblasts. By combining a physico-chemical and a (geno)toxicological approach, we defined the causal mechanisms linking the physico-chemical properties of nano-CeO2 with their biological effects. Using X-ray absorption spectroscopy, we observed a reduction of 21±4% of the Ce4+ atoms localized at the surface of CeO2 nanoparticles due to the interactions with organic molecules present in biological media. These particles induced strong DNA lesions and chromosome damage related to an oxidative stress. These genotoxic effects occurred at very low doses, which highlighted the importance of a genotoxicological approach during the assessment of the toxicity of nanoparticles.


Biochimica et Biophysica Acta | 2001

The expression of genes induced in melanocytes by exposure to 365-nm UVA: study by cDNA arrays and real-time quantitative RT-PCR.

Séverine Jean; Chantal Bideau; Laurence Bellon; Gilles Halimi; Michel De Méo; T. Orsière; G. Duménil; J.L. Bergé-Lefranc; Alain Botta

Ultraviolet A radiation (UVA; 320-400 nm) constitutes more than 90% of the terrestrial UV solar energy. This type of radiation generates reactive oxygen species and consequently induces DNA damage. UVA irradiation is now considered to be an important carcinogen agent especially in the development of melanoma. UVA radiation is known to activate several pathways in mammalian cells. We have used cDNA arrays to analyze differential gene expression in primary cultures of human melanocytes in response to 365-nm UVA. Among 588 genes studied, 11 were overexpressed. These genes included genes involved in cell cycle regulation (GADD45, CIP1/WAF1), in stress response (HSP70, HSP40, HSP86), in apoptosis (GADD153, tristetraproline) and genes encoding transcription factors (EGR-1, ETR-101, c-JUN, ATF4). This coordinate gene regulation was confirmed by real-time quantitative RT-PCR.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2002

Cytogenetic monitoring of industrial radiographers using the micronucleus assay.

I. Sari-Minodier; T. Orsière; L. Bellon; J. Pompili; C. Sapin; Alain Botta

Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. Industrial radiographers are among the radiation workers who receive the highest individual occupational radiation doses. To assess occupationally induced chromosomal damage, we performed the cytokinesis-block micronucleus (CBMN) assay in peripheral lymphocytes of 29 male industrial radiographers, exposed to ionizing radiation for 12.8 years+/-11.2, in comparison with 24 gender-, age-, and smoking habits-matched controls. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 17 exposed subjects and 17 controls randomized from the initial populations. The mean cumulative equivalent dose, recorded by film dosimeters, was 67.2 mSv+/-49.8 over the past 5 years. The mean micronucleated binucleated cell rate (MCR) was significantly higher in the industrial radiographers than in the controls (10.7 per thousand +/-5.2 versus 6.6 per thousand +/-3.1, P=0.009); this difference was due to a significantly higher frequency of centromere-negative micronuclei (C-MN) in exposed subjects than in controls (8.5 per thousand +/-4.9 versus 2.2 per thousand +/-1.6, P<0.001). The two populations did not significantly differ in centromere-positive micronuclei (C+MN) frequency. These findings demonstrate a clastogenic effect in lymphocytes of industrial radiographers. MCR significantly positively correlated with age in the two groups. After correction for the age effect, MCR did not correlate with duration of occupational exposure. No correlation between radiation doses and MCR, C-MN, and C+MN frequencies was observed. In addition to physical dosimetry records, the enhanced chromosomal damage in lymphocytes of industrial radiographers emphasizes the importance of radiation safety programs.


Chemico-Biological Interactions | 2012

EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: Evidence for NADPH oxidase and mitochondrial stimulation

Marcel Culcasi; Laila Benameur; Anne Mercier; Céline Lucchesi; Hidayat Rahmouni; Alice Asteian; Gilles Casano; Alain Botta; Hervé Kovacic; Sylvia Pietri

To better understand the antioxidant (enzyme mimetic, free radical scavenger) versus oxidant and cytotoxic properties of the industrially used cerium oxide nanoparticles (nano-CeO(2)), we investigated their effects on reactive oxygen species formation and changes in the antioxidant pool of human dermal and murine 3T3 fibroblasts at doses relevant to chronic inhalation or contact with skin. Electron paramagnetic resonance (EPR) spin trapping with the nitrone DEPMPO showed that pretreatment of the cells with the nanoparticles dose-dependently triggered the release in the culture medium of superoxide dismutase- and catalase-inhibitable DEPMPO/hydroxyl radical adducts (DEPMPO-OH) and ascorbyl radical, a marker of ascorbate depletion. This DEPMPO-OH formation occurred 2 to 24 h following removal of the particles from the medium and paralleled with an increase of cell lipid peroxidation. These effects of internalized nano-CeO(2) on spin adduct formation were then investigated at the cellular level by using specific NADPH oxidase inhibitors, transfection techniques and a mitochondria-targeted antioxidant. When micromolar doses of nano-CeO(2) were used, weak DEPMPO-OH levels but no loss of cell viability were observed, suggesting that cell signaling mechanisms through protein synthesis and membrane NADPH oxidase activation occurred. Incubation of the cells with higher millimolar doses provoked a 25-60-fold higher DEPMPO-OH formation together with a decrease in cell viability, early apoptosis induction and antioxidant depletion. These cytotoxic effects could be due to activation of both the mitochondrial source and Nox2 and Nox4 dependent NADPH oxidase complex. Regarding possible mechanisms of nano-CeO(2)-induced free radical formation in cells, in vitro EPR and spectrophotometric studies suggest that, contrary to Fe(2+) ions, the Ce(3+) redox state at the surface of the particles is probably not an efficient catalyst of hydroxyl radical formation by a Fenton-like reaction in vivo.


Environmental and Molecular Mutagenesis | 2008

Evaluation of the Genotoxicity of River Sediments From Industrialized and Unaffected Areas Using a Battery of Short-Term Bioassays

Assia Aouadene; Carole Di Giorgio; Luc Sarrazin; Xavier Moreau; Laetitia De Jong; Fabrice Garcia; Alain Thiéry; Alain Botta; Michel De Méo

The present investigation evaluated the capacity of the Salmonella mutagenicity test, the comet assay, and the micronucleus assay to detect and characterize the genotoxic profile of river sediments. Three stations were selected on an urban river (Bouches du Rhône, France) exposed to various sources of industrial and urban pollution (StA, StB, and StC) and one station on its tributary (StD). One station in a nonurban river was included (REF). The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by HPLC, and the genotoxicity of the sediments was monitored by the Salmonella mutagenicity test (TA98 + S9, YG1041 ± S9), the comet assay, and the micronucleus assay on CHO cells. Chemical analysis showed that the total PAH concentrations ranged from 23 μg kg−1 dw (REF) to 1285 μg kg−1 dw (StD). All the sediments were mutagenic in the Salmonella mutagenicity test. The mutagenicity was probably induced by the presence of nitroarenes (StA, StB, StC, and StD) and aromatic amines (REF) as deduced from the mutagenicity profiles of strains YG1041 ± S9 and TA98 + S9. The comet assay revealed direct DNA lesions in REF, StA, and StB sediments and metabolization‐dependent DNA damage in StC and StD. The micronucleus assay showed an absence of clastogenicity for StA ± S9 and StC‐S9, and a significant clastogenicity ± S9 for the three other stations. The genotoxicity ranking determined by the comet assay + S9 matched the ranking of total and carcinogenic PAH concentrations, and this assay was found to be the most sensitive. Environ. Mol. Mutagen., 2008.


International Journal of Molecular Sciences | 2013

Ultrastructural Interactions and Genotoxicity Assay of Cerium Dioxide Nanoparticles on Mouse Oocytes

Blandine Courbiere; Mélanie Auffan; Raphael Rollais; Virginie Tassistro; Aurélie Bonnefoy; Alain Botta; Jérôme Rose; T. Orsière; Jeanne Perrin

Cerium dioxide nanoparticles (CeO2 ENPs) are on the priority list of nanomaterials requiring evaluation. We performed in vitro assays on mature mouse oocytes incubated with CeO2 ENPs to study (1) physicochemical biotransformation of ENPs in culture medium; (2) ultrastructural interactions with follicular cells and oocytes using Transmission Electron Microscopy (TEM); (3) genotoxicity of CeO2 ENPs on follicular cells and oocytes using a comet assay. DNA damage was quantified as Olive Tail Moment. We show that ENPs aggregated, but their crystal structure remained stable in culture medium. TEM showed endocytosis of CeO2 ENP aggregates in follicular cells. In oocytes, CeO2 ENP aggregates were only observed around the zona pellucida (ZP). The comet assay revealed significant DNA damage in follicular cells. In oocytes, the comet assay showed a dose-related increase in DNA damage and a significant increase only at the highest concentrations. DNA damage decreased significantly both in follicular cells and in oocytes when an anti-oxidant agent was added in the culture medium. We hypothesise that at low concentrations of CeO2 ENPs oocytes could be protected against indirect oxidative stress due to a double defence system composed of follicular cells and ZP.


Journal of Andrology | 2009

Occupational Exposures Obtained by Questionnaire in Clinical Practice and Their Association With Semen Quality

Gwendoline de Fleurian; Jeanne Perrin; René Ecochard; Emmanuelle Dantony; André Lanteaume; Vincent Achard; Jean-Marie Grillo; Marie-Roberte Guichaoua; Alain Botta; I. Sari-Minodier

In industrial countries, evidence suggests that semen quality has been steadily decreasing over the past 5 decades. We employed a short questionnaire to examine the association between self-reported physical or chemical occupational exposures and semen quality. The study included 402 men consulting for couple infertility (314 with oligospermia, asthenospermia, or teratospermia and 88 with normal semen; World Health Organization criteria). Exposure effects on global sperm quality and total sperm count, sperm motility, and sperm morphology were investigated. We found significant associations between semen impairment and occupational risk factors such as exposure to heavy metals (adjusted odds ratio [OR] = 5.4; 95% confidence interval [CI], 1.6-18.1), solvents (OR = 2.5; 95% CI, 1.4-4.4), fumes (OR = 1.9; 95% CI, 1.1-3.4), and polycyclic aromatic hydrocarbons (OR = 1.9; 95% CI, 1.1-3.5). Exposure to pesticides or cement was nearly significant (OR = 3.6; 95% CI, 0.8-15.8, and OR = 2.5; 95% CI, 0.95-6.5, respectively). Physical risk factors were associated with some sperm anomalies, such as mechanical vibrations with oligospermia and teratospermia as well as excess heat and extended sitting periods with impaired motility. Exposure to ionizing radiation and electromagnetic fields was not associated with semen impairment; these results, however, may be skewed, because very few subjects reported such exposure. Despite the small dataset, self-reported exposures were correlated with semen impairment. This approach may be recommended in routine clinical practice to seek relationships between occupational exposures to reprotoxic agents and impaired semen parameters. This knowledge would allow preventive measures in the workplace to be established and could be complemented by the use of biomarkers to better characterize exposure to chemical substances and their spermiotoxic effects.


Nanotoxicology | 2015

DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity

Laila Benameur; Mélanie Auffan; Mathieu Cassien; Liu Wei; Marcel Culcasi; Hidayat Rahmouni; Pierre Stocker; Virginie Tassistro; Jean-Yves Bottero; Jérôme Rose; Alain Botta; Sylvia Pietri

Abstract The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10−5–6 × 10−3 g/l corresponding to a concentration range of 0.22–22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release.


Toxicology Letters | 2003

Patterns of gene expressions induced by arsenic trioxide in cultured human fibroblasts

Vanina Burnichon; Séverine Jean; Laurence Bellon; Marie Maraninchi; Chantal Bideau; T. Orsière; Alain Margotat; Victoria Gerolami; Alain Botta; Jean-Louis Bergé-Lefranc

Arsenic exposure is associated with several human diseases and particularly, with neoplasia. Although the mechanism of arsenic toxicity is not fully understood, several recent works pointed out the involvement of oxidative stress in arsenic-induced DNA damage that, in living cells, correlates with changes in gene expressions. In cultured human fibroblasts exposed for 24 h to micromolar arsenic concentrations, we studied, using real-time RT-PCR, the expression profile of a limited number of genes: genes coding for a stress protein (HSP70), transcription factors (cJUN, cFOS, ETR103, ETR101 and TTP) and cell cycle or DNA repair proteins (P21, GADD153). We observed that the expression profile of genes followed individual different patterns that can be summed up in early-transient gene expression by contrast to delayed gene expression.


Chemical Research in Toxicology | 2012

Influence of the Length of Imogolite-Like Nanotubes on Their Cytotoxicity and Genotoxicity toward Human Dermal Cells

Wei Liu; Perrine Chaurand; Carole Di Giorgio; Michel De Méo; Antoine Thill; Mélanie Auffan; Armand Masion; Daniel Borschneck; Florence Chaspoul; Philippe Gallice; Alain Botta; Jean-Yves Bottero; Jérôme Rose

Physical-chemical parameters such as purity, structure, chemistry, length, and aspect ratio of nanoparticles (NPs) are linked to their toxicity. Here, synthetic imogolite-like nanotubes with a set chemical composition but various sizes and shapes were used as models to investigate the influence of these physical parameters on the cyto- and genotoxicity and cellular uptake of NPs. The NPs were characterized using X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Imogolite precursors (PR, ca. 5 nm curved platelets), as well as short tubes (ST, ca. 6 nm) and long tubes (LT, ca. 50 nm), remained stable in the cell culture medium. Internalization into human fibroblasts was observed only for the small particles PR and ST. None of the tested particles induced a significant cytotoxicity up to a concentration of 10(-1) mg·mL(-1). However, small sized NPs (PR and ST) were found to be genotoxic at very low concentration 10(-6) mg·mL(-1), while LT particles exhibited a weak genotoxicity. Our results indicate that small size NPs (PR, ST) were able to induce primary lesions of DNA at very low concentrations and that this DNA damage was exclusively induced by oxidative stress. The higher aspect ratio LT particles exhibited a weaker genotoxicity, where oxidative stress is a minor factor, and the likely involvement of other mechanisms. Moreover, a relationship among cell uptake, particle aspect ratio, and DNA damage of NPs was observed.

Collaboration


Dive into the Alain Botta's collaboration.

Top Co-Authors

Avatar

T. Orsière

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel De Méo

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Jeanne Perrin

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Jérôme Rose

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge