Alain Dabas
ASM Clermont Auvergne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alain Dabas.
Journal of Atmospheric and Oceanic Technology | 2005
Joël Van Baelen; Jean-Pierre Aubagnac; Alain Dabas
In this study, the authors compare the integrated water vapor (IWV) retrieved with a global positioning system (GPS) receiver, radiosondes (RS), and a microwave radiometer (MWR) using data collected simultaneously during a 3-month campaign in the fall of 2002 in Toulouse, France. In particular for this study, the GPS analysis was performed in near-real time to provide estimates of the IWV in order to evaluate the potential of GPS observations for operational meteorological purposes. Although the three instrument estimates agree quite well together, the IWV estimates retrieved by GPS are generally larger than those of RS, while evidence is shown of a marked diurnal cycle: the differences are larger during the day (up to 2 mm) than at night (less than 0.5 mm). This can be explained by a daytime dry bias of the RS. Regarding the MWR, similar findings but to a lesser extent (differences between 0 and 1 mm) are reported. Furthermore, it has been established that the GPS estimates exhibit a strong dependency upon the IWV values resulting in a 15% faster variation when compared to the other means of IWV estimation in this study.
Optical Engineering | 2001
Ch. Werner; Pierre H. Flamant; Oliver Reitebuch; F. Ko¨pp; Juergen Streicher; S. Rahm; Engelbert Nagel; Michael Klier; H. Herrmann; C. Loth; P. Delville; Ph. Drobinski; B. Romand; Ch. Boitel; D. Oh; M. Lopez; Mireille Meissonnier; D. Bruneau; Alain Dabas
The purpose of the project WIND (wind infrared Doppler lidar) is the development of an airborne conical scanning CO2 Doppler lidar in French-German cooperation by CNRS/CNES and DLR. The instrument and its peculiarities are described. Measurements of the Doppler shift from a moving platform with an accuracy of 1 m/s require instantaneous access to the position data of the platform. Therefore this part of the instrument is described in detail. Ground-based tests, airborne tests and a validation flight were performed. The instrument can be used for me- soscalic meteorology to test models and contribute to a spaceborne Doppler lidar in the future.
Journal of Geophysical Research | 2007
Philippe Drobinski; F. Saïd; Gérard Ancellet; Joaquim Arteta; Patrick Augustin; Sophie Bastin; A. Brut; Jean-Luc Caccia; Bernard Campistron; S. Cautenet; Augustin Colette; Patrice Coll; U. Corsmeier; Brigitte Cros; Alain Dabas; Hervé Delbarre; Anne Dufour; Pierre Durand; Vincent Guénard; M. Hasel; N. Kalthoff; C. Kottmeier; Fanny Lasry; Aude Lemonsu; Fabienne Lohou; Valéry Masson; Laurent Menut; Clotilde Moppert; V.-H. Peuch; V. Puygrenier
In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation.In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation.
Journal of Geophysical Research | 2009
Diana Bou Karam; Cyrille Flamant; Pierre Tulet; Jean-Pierre Chaboureau; Alain Dabas; Martin C. Todd
A three-dimensional mesoscale numerical simulation has been performed to investigate the dust emissions over the Sahel associated with strong near-surface winds in the region of the West African Inter Tropical Discontinuity (ITD) during the summer, when the ITD is located over Niger and Mali around 18°N. The study focuses on the period from 2 to 12 July 2006, in the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Special Observing Period 2a1. The comparison with observations suggests that the model can be used reliably to analyze and quantify the dust emissions associated with the strong near-surface winds blowing over the Sahelian dust sources during the period of interest. The daily mean values of dust load related to the strong winds on both side of the ITD, as estimated from the simulation within the model domain (2°W–16°E, 12–28°N), are in excess of 2 Tg on some of the days of the 2–12 July 2006 period. In the present case, the dust load associated with the strong winds south of the ITD accounts for between one third and two thirds of the total load mobilized in the ITD region over the entire domain on a given day. It is simulated to range between 0.5 and 0.8 Tg on average. This study suggests that emissions driven by strong surface winds occurring on both sides of the ITD while lying across the Sahel may contribute significantly to the total dust load over West and North Africa observed annually.
Tellus A | 2008
Alain Dabas; Marie-Laure Denneulin; Philippe Flamant; C. Loth; Anne Garnier; A. Dolfi-Bouteyre
The molecular channel of the space-based Doppler lidar ADM-Aeolus relies on a double Fabry—Perot (FP) interferometer. The difference in photon numbers transmitted by the two FPs divided by their sum- the so-called Rayleigh response—is a function of the central frequency of the spectrum of the laser light backscattered by the atmosphere, so that a proper inversion enables the measurement of Doppler shifts and line-of-sight wind velocities. In this paper, it is shown that the relation-ship between the Rayleigh response and the Doppler shift does not depend on the sole characteristics of the instrument, but also on the atmospheric pressure and temperature (through the Rayleigh—Brillouin effect), and the likely presence of a narrow-band radiation due to particle scattering. The impact of these on the precision of inverted Doppler shifts (or line-of-sight winds) is assessed showing that a correction is needed. As they are lacking the appropriate precision, climatology profiles of pressure, temperature or aerosols cannot be used as an input. It is proposed to use data predicted by a numerical weather prediction system instead. A possible correction scheme is proposed. Its implication on the quality of retrieved Rayleigh winds is discussed.
Tellus A | 2008
David G. H. Tan; Erik Andersson; Jos de Kloe; Gert-Jan Marseille; Ad Stoffelen; Paul Poli; Marie-Laure Denneulin; Alain Dabas; Dorit Huber; Oliver Reitebuch; Pierre H. Flamant; Olivier Le Rille; Herbert Nett
The ADM-Aeolus is primarily a research and demonstration mission flying the first Doppler wind lidar in space. Flexible data processing tools are being developed for use in the operational ground segment and by the meteorological community. We present the algorithms developed to retrieve accurate and representative wind profiles, suitable for assimilation in numerical weather prediction. The algorithms provide a flexible framework for classification and weighting of measurement-scale (1–10 km) data into aggregated, observation-scale (50 km) wind profiles for assimilation. The algorithms account for temperature and pressure effects in the molecular backscatter signal, and so the main remaining scientific challenge is to produce representative winds in inhomogeneous atmospheric conditions, such as strong wind shear, broken clouds, and aerosol layers. The Aeolus instrument provides separate measurements in Rayleigh and Mie channels, representing molecular (clear air) and particulate (aerosol and clouds) backscatter, respectively. The combining of information from the two channels offers possibilities to detect and flag difficult, inhomogeneous conditions. The functionality of a baseline version of the developed software has been demonstrated based on simulation of idealized cases.
Boundary-Layer Meteorology | 2001
Philippe Drobinski; Alain Dabas; Christian Haeberli; Pierre H. Flamant
Flow splitting in the Rhine valley has been observed with a transportable wind lidar (TWL) during a shallow-foehn event in the framework of the Mesoscale Alpine Programme (MAP). The Doppler lidar recorded in detail flow splitting, foehn wind gusts, and flow reversal. Such structures have not previously been observed with comparable detail by conventional in-situinstruments. In addition to the TWL, boundary-layer processes have been documented by means of rawinsondes and surface stations. This paper presents an analysis of the processes giving birth to flow splitting between the Seez and Rhine valleys during Intensive Observation Period (IOP) 5 (1–3 October 1999) by combining the collected data with hydraulic theory. The study shows thatthe splitting of the channelled flow is associated with (1) the existence of a stagnation point at the intersection of the Seez and Rhine valleys, and (2) the deflection of the flow by the lateral sidewalls of the valleys.
Journal of Applied Meteorology | 2000
Philippe Drobinski; Alain Dabas; Pierre H. Flamant
Abstract Heterodyne Doppler lidars (HDLs) are used to monitor atmospheric wind field and wind turbulence at remote distance. This last application calls for the derivation of wind spectra, which can be characterized by the dissipation rate and the κ-spectral peak (or outer scale of turbulence). However, the HDL technique may suffer two problems. First, HDL measurements result in spatial averaging of the true wind velocity along the line of sight, because of the laser pulse duration and windowing effect on processed signals. Second, even at high signal-to-noise ratio, the retrieved turbulent velocity field may be contaminated by errors due to speckle fluctuations. It is shown that both spatial averaging and error contribution to the wind spectra can be modeled starting from the transmitted laser pulse characteristics and signal processing parameters, so that their effect can be predicted. The rms difference between the estimated and predicted turbulent spectra is minimized in order to infer the turbulence ...
Journal of Atmospheric and Oceanic Technology | 1998
Alain Dabas; Philippe Drobinski; Pierre H. Flamant
Radial wind velocity measurements by a pulsed CO2 Doppler lidar may be biased even in stationary atmospheric conditions. The authors show it is due to random speckle fluctuations of the backscattered signal and is related to the dissymmetry of the transmitted laser pulse periodogram. A procedure is proposed to correct for the bias on a shot-to-shot basis when a pulse-pair mean-frequency estimator is used for processing. The procedure is validated on simulated and actual lidar signals.
Tellus A | 2008
Pierre H. Flamant; Juan Cuesta; Marie-Laure Denneulin; Alain Dabas; Dorit Huber
ADM-Aeolus, the wind Lidar under development at ESA, is a High Spectral Resolution Lidar that additionally provides separated information on particles (Mie channel) and molecules (Rayleigh channel). Lidar signals will be accumulated in vertical range bins in order to reach sufficient signal-to-noise ratio for reliable wind estimates. The vertical range bin integration may vary from 250mnear the surface up to 2 kmin the upper troposphere and lower stratosphere. Significant attenuation in a range bin changes the nature of the retrieval problem. The commonly used Lidar inversion techniques appear to be inadequate to process bin-accumulated signals. This paper presents the ‘L2A processor’, conceived to use ADM-Aeolus signals to provide information on aerosol and cloud layers optical properties. The altitude, geometrical depth, optical depth, backscatter-to-extinction ratio and scattering ratio are to be retrieved. The L2A processor algorithms provide a new formulation to the inverse problem for various filling cases of a range bin and it includes a credibility criterion (CC) in order to select the best filling approximation. The effective vertical resolution can be two to four times better than the ADM-Aeolus range bins. The basic concept, the processing algorithms, numerical examples and sensitivity tests are here presented.