Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Paquette is active.

Publication


Featured researches published by Alain Paquette.


Frontiers in Ecology and the Environment | 2010

The role of plantations in managing the world's forests in the Anthropocene

Alain Paquette; Christian Messier

The public view of tree plantations is somewhat ambiguous. While planting a single tree is generally considered good for the environment, planting a million trees raises concerns in some circles. Although plantations are often used to compensate for bad forestry practices, to willingly simplify otherwise complex forest ecosystems, or as a strategy for allowing the current petroleum-based economy to continue on its course, we believe plantations have a legitimate place in the sustainable management of forests. Multi-purpose plantations, designed to meet a wide variety of social, economic, and environmental objectives, can provide key ecosystem services, help preserve the worlds remaining primary forests, and sequester an important proportion of the atmospheric carbon released by humans over the past 300 years.


Science | 2016

Positive biodiversity-productivity relationship predominant in global forests.

Jingjing Liang; Thomas W. Crowther; Nicolas Picard; Susan K. Wiser; Mo Zhou; Giorgio Alberti; Ernst-Detlef Schulze; A. David McGuire; Fabio Bozzato; Hans Pretzsch; Sergio de-Miguel; Alain Paquette; Bruno Hérault; Michael Scherer-Lorenzen; Christopher B. Barrett; Henry B. Glick; Geerten M. Hengeveld; Gert-Jan Nabuurs; Sebastian Pfautsch; Hélder Viana; Alexander C. Vibrans; Christian Ammer; Peter Schall; David David Verbyla; Nadja M. Tchebakova; Markus Fischer; James V. Watson; Han Y. H. Chen; Xiangdong Lei; Mart-Jan Schelhaas

Global biodiversity and productivity The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs. Science, this issue p. 196 Global forest inventory records suggest that biodiversity loss would result in a decline in forest productivity worldwide. INTRODUCTION The biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective. RATIONALE Forests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale. RESULTS We explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline. CONCLUSION Our findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is


Oecologia | 2009

Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest

Etienne Laliberté; Alain Paquette; Pierre Legendre; André Bouchard

166 billion to


Ecological Applications | 2006

Survival and growth of under-planted trees: a meta-analysis across four biomes.

Alain Paquette; André Bouchard; Alain Cogliastro

490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide. Global effect of tree species diversity on forest productivity. Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right). The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US


Ecology | 2014

Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences

Jurgis Sapijanskas; Alain Paquette; Catherine Potvin; Norbert Kunert; Michel Loreau

166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.


Oecologia | 2014

Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients

Cornelia M. Tobner; Alain Paquette; Peter B. Reich; Dominique Gravel; Christian Messier

Niche processes and other spatial processes, such as dispersal, may simultaneously control beta diversity, yet their relative importance may shift across spatial and temporal scales. Although disentangling the relative importance of these processes has been a continuing methodological challenge, recent developments in multi-scale spatial and temporal modeling can now help ecologists estimate their scale-specific contributions. Here we present a statistical approach to (1) detect the presence of a space–time interaction on community composition and (2) estimate the scale-specific importance of environmental and spatial factors on beta diversity. To illustrate the applicability of this approach, we use a case study from a temperate forest understory where tree seedling abundances were monitored during a 9-year period at 40 permanent plots. We found no significant space–time interaction on tree seedling composition, which means that the spatial abundance patterns did not vary over the study period. However, for a given year the relative importance of niche processes and other spatial processes was found to be scale-specific. Tree seedling abundances were primarily controlled by a broad-scale environmental gradient, but within the confines of this gradient the finer scale patchiness was largely due to other spatial processes. This case study illustrates that these two sets of processes are not mutually exclusive and can affect abundance patterns in a scale-dependent manner. More importantly, the use of our methodology for future empirical studies should help in the merging of niche and neutral perspectives on beta diversity, an obvious next step for community ecology.


Nature Ecology and Evolution | 2017

Spatial complementarity in tree crowns explains overyielding in species mixtures

Laura Williams; Alain Paquette; Jeannine Cavender-Bares; Christian Messier; Peter B. Reich

The transformation of natural forest regeneration processes by human activities has created the need to develop and implement new models of forest management. Alternative silvicultural systems such as variable retention harvest, partial and patch cuts, and older forest management practices such as under-planting, are used in many forests around the world, particularly in North American oak stands, the boreal and coastal temperate rain forests of Canada and the United States, and in many degraded tropical regions of Asia and the Americas. Specific objectives are pursued in each of these biomes, but some are common to most regions, such as preservation of cover and structure and their associated benefits for natural or artificial regeneration due to moderation of the microclimate, development of optimal light and competition conditions, and reduced predation by herbivores. Shelterwoods are often presented as an alternative to clear-cutting to improve the survival of planted trees. A meta-analysis of published results with randomization tests was performed to test the relationship between overstory density and planted seedling growth and survival. Multiple comparisons were also used to reveal optimal levels of overstory density, if they exist. A majority of studies show that survival and growth improve as stand density decreases to an intermediate level, below which they either drop or stabilize. This level seems optimal in most conditions, as it is also more apt to fulfill other objectives imposed on todays forest activities, such as the conservation of forest processes and structures, and the reconstruction of degraded stands through the accelerated return of mid- to late-successional species.


Journal of Ecology | 2015

Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

C.E. Thimothy Paine; Lucy Amissah; Harald Auge; Christopher Baraloto; Martin Baruffol; Nils Bourland; Helge Bruelheide; Kasso Daïnou; Roland C. de Gouvenain; Jean-Louis Doucet; Susan J. Doust; Paul V. A. Fine; Claire Fortunel; Josephine Haase; Karen D. Holl; Hervé Jactel; Xuefei Li; Kaoru Kitajima; Julia Koricheva; Cristina Martínez-Garza; Christian Messier; Alain Paquette; Christopher D. Philipson; Daniel Piotto; Lourens Poorter; Juan M. Posada; Catherine Potvin; Kalle Rainio; Sabrina E. Russo; Mariacarmen Ruiz-Jaen

Light partitioning is often invoked as a mechanism for positive plant diversity effects on ecosystem functioning. Yet evidence for an improved distribution of foliage in space or time in diverse plant communities remains scarce, and restricted mostly to temperate grasslands. Here we identify the mechanisms through which tree species diversity affects community-level light capture in a biodiversity experiment with tropical trees that displays overyielding, i.e., enhanced biomass production in mixtures. Using a combination of empirical data, mechanistic models, and statistical tools, we develop innovative methods to test for the isolated and combined effects of architectural and temporal niche differences among species as well as plastic changes in crown shape within species. We show that all three mechanisms enhanced light capture in mixtures and that temporal niche differences were the most important driver of this result in our seasonal tropical system. Our study mechanistically demonstrates that niche differences and phenotypic plasticity can generate significant biodiversity effects on ecosystem functioning in tropical forests.


Ecology and Society | 2009

Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks

Alain Paquette; Jessica Hawryshyn; Alexandra Vyta Senikas; Catherine Potvin

Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species’ functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity–ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.


Nature | 2017

Leaf bacterial diversity mediates plant diversity and ecosystem function relationships

Isabelle Laforest-Lapointe; Alain Paquette; Christian Messier; Steven W. Kembel

Deciphering the mechanisms that link biodiversity with ecosystem functions is critical to understanding the consequences of changes in biodiversity. The hypothesis that complementarity and selection effects drive relationships between biodiversity and ecosystem functions is well accepted, and an approach to statistically untangle the relative importance of these effects has been widely applied. In contrast, empirical demonstrations of the biological mechanisms that underlie these relationships remain rare. Here, on the basis of a field experiment with young trees, we provide evidence that one form of complementarity in plant communities—complementarity among crowns in canopy space—is a mechanism, related to light interception and use, that links biodiversity with ecosystem productivity. Stem biomass overyielding increased sharply in mixtures with greater crown complementarity. Inherent differences among species in crown architecture led to greater crown complementarity in functionally diverse species mixtures. Intraspecific variation, specifically neighbourhood-driven plasticity in crowns, further modified spatial complementarity and strengthened the positive relationship with overyielding—crown plasticity and inherent interspecific differences contributed near equally in explaining patterns of overyielding. We posit that crown complementarity is an important mechanism that may contribute to diversity-enhanced productivity in forests.

Collaboration


Dive into the Alain Paquette's collaboration.

Top Co-Authors

Avatar

Christian Messier

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kris Verheyen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bill Shipley

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge