Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Pierret is active.

Publication


Featured researches published by Alain Pierret.


Plant and Soil | 2006

Water uptake by plant roots: II - Modelling of water transfer in the soil root-system with explicit account of flow within the root system : Comparison with experiments

Claude Doussan; Alain Pierret; Emmanuelle Garrigues; Loïc Pagès

Soil water uptake by plant roots results from the complex interplay between plant and soil which modulates and determines transport processes at a range of spatial and temporal scales: at small scales, uptake rates are determined by local soil and root hydraulic properties but, at the plant scale, local processes interact within the root system and are integrated through the hydraulic architecture of the root system and plant transpiration. However, because of the inherent complexity of the root system (both structural and functional), plant roots are commonly account for with synthetic but over-simplifying descriptors, valid at a given spatial scale. In this article, we present a model describing both soil and plant processes involved in water uptake at the scale of the whole root system with explicit account of individual roots. This is achieved through the unifying concepts of root system architecture and hydraulic continuity between the soil and plant. The model is based on a combination of architectural, root system hydraulic and soil water transfer modelling. The model can reproduce qualitatively and quantitatively laboratory experimental data obtained from imaging of water uptake by light transmission (cf. Garrigues et al., Water uptake by plant roots: I-Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant and soil (2006, this issue) or X-ray imaging for two soil types (a sand/clay mix and a sandy clay loam) and different narrow-leaf lupin root systems (taprooted and fibrous), using independently measured soil–plant parameters. Results of the experiments and modelling reported in this paper concur to show that a water extraction front formed on the root system. This uptake front’s spatial extension and propagation were closely related to the local dependence between root and soil hydraulic properties and root axial conductance. Hence, a sharp front formed in the sand/clay mix but was much more attenuated in the sandy loam. Comparison between taprooted and fibrous root systems grown in a sand/clay mix, show that the taprooted architecture induced a more spatially concentrated uptake zone (near the soil surface) with higher flux rates, but with xylem water potential at the base of the root system twice as low than in the fibrous architecture. Modelling provided evidence that hydraulic lift might have occurred when transpiration declined, particularly in soil prone to abrupt variations in soil water potential (sand/clay mix). Finally, such a model, explicitly coupling root system-soil water transfers, can be useful to study water uptake in relation with root architectural traits, distribution of root hydraulic conductance or influence of heterogeneous conditions (localised irrigation, root clumping).


Geoderma | 2002

3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis

Alain Pierret; Yvan Capowiez; L Belzunces; Chris Moran

Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging


Frontiers in Plant Science | 2013

How to study deep roots—and why it matters

Jean-Luc Maeght; Boris Rewald; Alain Pierret

The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “deep roots” is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques.


Biology and Fertility of Soils | 1998

3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores

Yvan Capowiez; Alain Pierret; O. Daniel; P. Monestiez; André Kretzschmar

Abstract Four soil cores (length, 20 cm; diameter, 16 cm) were sampled in a Swiss pre-Alpine meadow with high earthworm abundance (>400 individuals/m2); two cores were taken in October 1993 and the other two cores in April 1994. The cores were described using computer assisted tomography which gives a series of section images every 3 mm. A method for reconstructing the three-dimensional (3D) skeleton of the earthworm burrow system is presented and discussed. This method provides an image of the structural organisation of the burrow system and was found to be adequately sensitive for use in ecological and functional studies. The seasonal variation of these 3D skeletons was investigated using two approaches, i.e. the analysis of: (1) global burrow system characteristics, and (2) individual burrow characteristics. At the scale of the global burrow system no difference was found between seasons (same number of burrows and same total burrow length) except for the vertical segment distribution, which was homogeneous in spring and decreased with depth in the fall. The study of individual burrow characteristics revealed that burrows tended to be more vertical in spring and that their branching intensity was higher in this season.


Plant and Soil | 1999

Differentiation of soil properties related to the spatial association of wheat roots and soil macropores

Alain Pierret; Chris Moran; C.E. Pankhurst

Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1–3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained.


Plant and Soil | 2002

Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia

C.E. Pankhurst; Alain Pierret; B.G. Hawke; J. M. Kirby

Some agricultural soils in South Eastern Australia with duplex profiles have subsoils with high bulk density, which may limit root penetration, water uptake and crop yield. In these soils, a large proportion (up to 80%) of plant roots maybe preferentially located within the macropores or in the soil within 1–10 mm of the macropores, a zone defined as the macropore sheath (MPS). The chemical and microbiological properties of MPS soil manually dissected from a 1–3 mm wide region surrounding the macropores was compared with that of adjacent bulk soil (>10 mm from macropores) at 4 soil depths (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm). Compared to the bulk soil, the MPS soil had higher organic C, total N, bicarbonate-extractable P, Ca+, Cu, Fe and Mn and supported higher populations of bacteria, fungi, actinomycetes, Pseudomonas spp., Bacillus spp., cellulolytic bacteria, cellulolytic fungi, nitrifying bacteria and the root pathogen Pythium.In addition, analysis of carbon substrate utilization patterns showed the microbial community associated with the MPS soil to have higher metabolic activity and greater functional diversity than the microbial community associated with the bulk soil at all soil depths. Phospholipid fatty acids associated with bacteria and fungi were also shown to be present in higher relative amounts in the MPS soil compared to the bulk soil. Whilst populations of microbial functional groups in the MPS and the bulk soil declined with increasing soil depth, the differentiation between the two soils in microbiological properties occurred at all soil depths. Soil aggregates (< 0.5 mm diameter) associated with plant roots located within macropores were found to support a microbial community that was quantitatively and functionally different to that in the MPS soil and the bulk soil at all soil depths. The microbial community associated with these soil aggregates thus represented a third recognizable environment for plant roots and microorganisms in the subsoil.


Geoderma | 1999

X-ray computed tomography to quantify tree rooting spatial distributions

Alain Pierret; Yvan Capowiez; Chris Moran; André Kretzschmar

Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees


Plant and Soil | 2000

X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure

Chris Moran; Alain Pierret; A. W. Stevenson

Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.


Plant and Soil | 2003

Simultaneous X-ray imaging of plant root growth and water uptake in thin-slab systems

Alain Pierret; Mac Kirby; Chris Moran

Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.


Biology and Fertility of Soils | 2003

Characterisation of the three-dimensional structure of earthworm burrow systems using image analysis and mathematical morphology

Yvan Capowiez; Alain Pierret; Chris Moran

The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (3D) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic ( Aporrectodea nocturna), and an endogeic species ( Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species

Collaboration


Dive into the Alain Pierret's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Valentin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Maeght

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Guillaume Lacombe

International Water Management Institute

View shared research outputs
Top Co-Authors

Avatar

Claude Doussan

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Chris Moran

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Bourdon

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Norbert Silvera

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexia Stokes

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Anneke de Rouw

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge