Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alamelu Mahalingam is active.

Publication


Featured researches published by Alamelu Mahalingam.


Molecular Pharmaceutics | 2011

Activity and Safety of Synthetic Lectins Based on Benzoboroxole-Functionalized Polymers for Inhibition of HIV Entry

Alamelu Mahalingam; Anthony R. Geonnotti; Jan Balzarini; Patrick F. Kiser

Lectins derived from plant and microbial sources constitute a vital class of entry inhibitors that target the oligomannose residues on the HIV envelope gp120. Despite their potency and specificity, success of lectin-based entry inhibitors may be impeded by high manufacturing costs, formulation and potential mitogenicity. Therefore, there exists a gap in the HIV microbicides pipeline that underscores the need for mass producible, synthetic, broad-spectrum, and biocomptabile inhibitors of HIV entry. Here, we present the development of a polymeric synthetic lectin, based on benzoboroxole (BzB), which exhibits weak affinity (∼25 M(-1)) for nonreducing sugars, similar to those found on the HIV envelope. High molecular weight BzB-functionalized polymers demonstrated antiviral activity that increased with an increase in ligand density and molecular weight of the polymer construct, revealing that polyvalency improves activity. Polymers showed significant increase in activity from 25 to 75 mol % BzB functionalization with EC(50) of 15 μM and 15 nM, respectively. A further increase in mole functionalization to 90% resulted in an increase of the EC(50) (59 ± 5 nM). An increase in molecular weight of the polymer at 50 mol % BzB functionalization showed a gradual but significant increase in antiviral activity, with the highest activity seen with the 382 kDa polymer (EC(50) of 1.1 ± 0.5 nM in CEM cells and 11 ± 3 nM in TZM-bl cells). Supplementing the polymer backbone with 10 mol % sulfonic acid not only increased the aqueous solubility of the polymers by at least 50-fold but also demonstrated a synergistic increase in anti-HIV activity (4.0 ± 1.5 nM in TZM-bl cells), possibly due to electrostatic interactions between the negatively charged polymer backbone and the positively charged V3-loop in the gp120. The benzoboroxole-sulfonic acid copolymers showed no decrease in activity in the presence of a seminal concentration of fructose (p > 0.05). Additionally, the copolymers exhibit minimal, if any, effect on the cellular viability, barrier properties, or cytokine levels in human reconstructed ectocervical tissue after 3 days of repeated exposure and did not show pronounced activity against a variety of other RNA and DNA viruses.


Molecular Pharmaceutics | 2010

Multivalent benzoboroxole functionalized polymers as gp120 glycan targeted microbicide entry inhibitors

Julie I. Jay; Bonnie E. Lai; David G. Myszka; Alamelu Mahalingam; Kris Langheinrich; David F. Katz; Patrick F. Kiser

Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.


Antimicrobial Agents and Chemotherapy | 2011

Vaginal Microbicide Gel for Delivery of IQP-0528, a Pyrimidinedione Analog with a Dual Mechanism of Action against HIV-1

Alamelu Mahalingam; Adam P. Simmons; Shweta R. Ugaonkar; Karen Watson; Charlene S. Dezzutti; Lisa C. Rohan; Robert W. Buckheit; Patrick F. Kiser

ABSTRACT Pyrimidinediones, a novel class of compounds, have previously been shown to possess antiviral activity at nanomolar concentrations. One member of this class of compounds, IQP-0528, was selected as the lead molecule for formulation development owing to its stability at physiologically relevant conditions, wide therapeutic window, and antiviral activity in the nanomolar range. Here, we report the development of two vaginal gels—3.0% hydroxyethyl cellulose (HEC) formulation and a 0.65% Carbopol formulation—for the sustained delivery of IQP-0528. Stability studies under accelerated conditions confirmed the chemical stability of IQP-0528 and mechanical stability of the gel formulation for 3 months. In vitro release studies revealed that diffusion-controlled release of IQP-0528 occurred over 6 h, with an initial lag time of approximately 1 h. Based on the drug release profile, the 3.0% HEC gel was selected as the lead formulation for safety and activity evaluations. The in vitro and ex vivo safety evaluations showed no significant loss in cell viability or significant inflammatory response after treatment with a 3.0% HEC gel containing 0.25% IQP-0528. In an in vitro HIV-1 entry inhibition assay, the lead formulation showed an 50% effective concentration of 0.14 μg/ml for gel in culture media, which corresponds to ∼0.001 μM IQP-0528. The antiviral activity was further confirmed by using polarized cervical explants, in which the formulation showed complete protection against HIV infection. In summary, these results are encouraging and warrant further evaluation of IQP-0528 gel formulations in in vivo models, as well as the development of alternative formulations for the delivery of IQP-0528 as a microbicide.


Journal of Pharmaceutical Sciences | 2012

Design of tenofovir–UC781 combination microbicide vaginal gels

Patrick F. Kiser; Alamelu Mahalingam; Judit Fabian; Eric Smith; Festo R. Damian; Jennifer J. Peters; David F. Katz; Hoda Elgendy; Meredith R. Clark; David R. Friend

Tenofovir (TFV) is a proven microbicide when administered topically as a vaginal gel. To improve its efficacy, TFV was combined with the nonnucleoside reverse-transcriptase inhibitor UC781 in a vaginal gel. Mixture design of experiments theory was used to define a range of gel compositions with varying rheological properties and to assess in vitro drug release and tissue retention. Experiments and computations led to the specification of three different gels referred to as a spreading gel (SG), an intermediate spreading gel (ISG), and a bolus gel (BG). These three gels, all containing 1.0% TFV and 0.1% micronized UC781, were evaluated for in vitro release, in vitro tissue retention and safety, and in vivo pharmacokinetics in the rabbit. There were some differences in in vitro release rates of UC781 (the higher the gel viscosity, the slower the release rate) across gels, while release of TFV was independent of gel type. In an organotypic human vaginal-ectocervical (VEC) tissue model, the amounts of tissue-associated TFV and UC781 were several orders of magnitude higher than their in vitro half-maximal inhibitory concentration. There were no differences in VEC tissue concentrations of TFV or UC781 between the SG, ISG, and BG. All three gels were well tolerated in the VEC model as assessed by tissue viability, electrical resistance, histology, and cytokine (interleukin-8 and interleukin-1 beta) release. The local vaginal tissue concentrations in rabbits following a single dose or seven once-daily doses were variable and generally lower than those found in the VEC tissue model. The approach described herein provides a rational schema to design and evaluate vaginal gels for use as microbicides.


Antiviral Research | 2012

Safety and efficacy of tenofovir/IQP-0528 combination gels - a dual compartment microbicide for HIV-1 prevention.

Charlene S. Dezzutti; Cory Shetler; Alamelu Mahalingam; Shweta R. Ugaonkar; Garry Gwozdz; Karen W. Buckheit; Robert W. Buckheit

Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor and IQP-0528 is a non-nucleoside reverse transcriptase inhibitor that also blocks virus entry. TFV and IQP-0528 alone have shown antiviral activity as microbicide gels. Because combination therapy will likely be more potent than mono-therapy, these drugs have been chosen to make a combination microbicide gel containing 2.5% TFV/1% IQP-0528. Safety and efficacy testing was done to evaluate five prototype combination gels. The gels retained TZM-bl cell and ectocervical and colorectal tissue viability. Further, the epithelium of the ectocervical and colorectal tissue remained intact after a 24h exposure. The ED(50) calculated from the formulations for IQP-0528 was ~32nM and for TFV was ~59nM and their inhibitory activity was not affected by semen. The ED(50) of TFV in the combination gels was ~100-fold lower than when calculated for the drug substance alone reflecting the activity of the more potent IQP-0528. When ectocervical and colorectal tissue were treated with the combination gels, HIV-1 p24 release was reduced by ≥1log(10) and ≥2log(10), respectively. Immunohistochemistry for the ectocervical tissues treated with combination gels showed no HIV-1 infected cells at study end. With the increased realization of receptive anal intercourse among heterosexual couples often in conjunction with vaginal intercourse, having a safe and effective microbicide for both mucosal sites is critical. The safety and efficacy profiles of the gels were similar for ectocervical and colorectal tissues suggesting these gels have the potential for dual compartment use.


Biomaterials | 2011

Inhibition of the Transport of HIV In Vitro Using a pH-Responsive Synthetic Mucin-Like Polymer System

Alamelu Mahalingam; Julie I. Jay; Kristofer Langheinrich; Shetha Shukair; Michael D. McRaven; Lisa C. Rohan; Betsy C. Herold; Thomas J. Hope; Patrick F. Kiser

In conjunction with the routine role of delivering the active ingredient, carefully designed drug delivery vehicles can also provide ancillary functions that augment the overall efficacy of the system. Inspired by the ability of the cervicovaginal mucus to impede the movement of HIV virions at acidic pH, we have engineered a pH-responsive synthetic polymer that shows improved barrier properties over the naturally occurring cervicovaginal mucus by inhibiting viral transport at both acidic and neutral pH. The pH-responsive synthetic mucin-like polymer is constructed with phenylboronic acid (PBA) and salicylhydroxamic acid (SHA), each individually copolymerized with a 2-hydroxypropyl methacrylamide (pHPMA) polymer backbone. At pH 4.8, the crosslinked polymers form a transient network with a characteristic relaxation time of 0.9 s and elastic modulus of 11 Pa. On addition of semen, the polymers form a densely crosslinked elastic network with a characteristic relaxation time greater than 60 s and elastic modulus of 1800 Pa. Interactions between the PBA-SHA crosslinked polymers and mucin at acidic pH showed a significant increase in elastic modulus and crosslink lifetime (p < 0.05). A transport assay revealed that migration of HIV and cells was significantly impeded by the polymer network at pH ≥ 4.8 with a diffusion coefficient of 1.60 x 10(-4) μm(2)/s for HIV. Additionally, these crosslinked polymers did not induce symptoms of toxicity or irritation in either human vaginal explants or a mouse model. In summary, the pH-responsive crosslinked polymer system reported here holds promise as a class of microbicide delivery vehicle that could inhibit the transport of virions from semen to the target tissue and, thereby, contribute to the overall activity of the microbicide formulation.


Contraception | 2016

Engineering and characterization of simplified vaginal and seminal fluid simulants.

Rachna Rastogi; Jonathan Su; Alamelu Mahalingam; Justin Clark; Samuel Sung; Thomas J. Hope; Patrick F. Kiser

BACKGROUND Reported vaginal and seminal fluid simulants have complex compositions with multiple preparatory steps that contribute to physical instability. We report the design and characterization of stable and simplified buffers that mimic the salient physical/chemical properties of the physiological fluids. STUDY DESIGN/METHODS Human cervicovaginal and seminal fluid samples were collected and buffering capacity was determined. The major buffering species were identified from published compositions of reproductive tract fluids. These values were used to compute the composition of vaginal and seminal fluid simulants. Ionic strength, buffering capacities, pH and osmolalities were then calculated or experimentally determined. Finally, cytotoxicity was evaluated in HEC-1-A cells and 3D reconstructed EpiVaginal™ tissue (VEC-100-FT) using naïve cells/tissue and nonoxynol-9 as controls. RESULTS The use of calculated amounts of conjugate acid and base for buffer development resulted in compositions that did not require endpoint pH adjustment and could be formulated as stable 10× concentrates. Furthermore, due to the absence of complex divalent salts, all our proposed simulants were stable at 4 °C for 1 month whereas precipitation and pH and osmolality changes were noted in reported buffers. Experimental determination of buffering capacities yielded similar values for undiluted cervicovaginal fluid (β4.2-5.2=35.6 ± 12.3 mM, N=7) and human seminal fluid (β7-6=37.5 ± 5 mM, N=3). All neat simulants showed significant cytotoxicity in HEC-1-A cells but were well tolerated by organotypic vaginal tissue. CONCLUSIONS We report revised and improved compositions of buffers mimicking salient properties of vaginal and seminal fluid necessary for in vitro product evaluation. IMPLICATIONS To support research in reproductive health and in particular drug delivery, we have designed and characterized stable new media to mimic these important fluids that can be used in a variety of in vitro studies.


Pharmaceutical Research | 2010

Design of a Semisolid Vaginal Microbicide Gel by Relating Composition to Properties and Performance

Alamelu Mahalingam; Eric Smith; Judit Fabian; Festo R. Damian; Jennifer J. Peters; Meredith R. Clark; David R. Friend; David F. Katz; Patrick F. Kiser


Macromolecules | 2008

Chemorheology of Phenylboronate−Salicylhydroxamate Cross-Linked Hydrogel Networks with a Sulfonated Polymer Backbone

Meredith C. Roberts; Alamelu Mahalingam; Melissa C. Hanson; Patrick F. Kiser


Soft Matter | 2011

Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks

Julie I. Jay; Kristofer Langheinrich; Melissa C. Hanson; Alamelu Mahalingam; Patrick F. Kiser

Collaboration


Dive into the Alamelu Mahalingam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Friend

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Su

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge