Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan B. Clark is active.

Publication


Featured researches published by Alan B. Clark.


Cell | 1996

Requirement for PCNA in DNA Mismatch Repair at a Step Preceding DNA Resynthesis

Asad Umar; Andrew B. Buermeyer; Jeffrey A. Simon; David C. Thomas; Alan B. Clark; R. Michael Liskay; Thomas A. Kunkel

A two-hybrid system was used to screen yeast and human expression libraries for proteins that interact with mismatch repair proteins. PCNA was recovered from both libraries and shown in the case of yeast to interact with both MLH1 and MSH2. A yeast strain containing a mutation in the PCNA gene had a strongly elevated mutation rate in a dinucleotide repeat, and the rate was not further elevated in a strain also containing a mutation in MLH1. Mismatch repair activity was examined in human cell extracts using an assay that does not require DNA repair synthesis. Activity was inhibited by p21WAF1 or a p21 peptide, both of which bind to PCNA, and activity was restored to inhibited reactions by addition of PCNA. The data suggest a PCNA requirement in mismatch repair at a step preceding DNA resynthesis. The ability of PCNA to bind to MLH1 and MSH2 may reflect linkage between mismatch repair and replication and may be relevant to the roles of mismatch repair proteins in other DNA transactions.


Nature Genetics | 2003

Cadmium is a mutagen that acts by inhibiting mismatch repair

Yong Hwan Jin; Alan B. Clark; Robbert J.C. Slebos; Hanan Al-Refai; Jack A. Taylor; Thomas A. Kunkel; Michael A. Resnick; Dmitry A. Gordenin

Most errors that arise during DNA replication can be corrected by DNA polymerase proofreading or by post-replication mismatch repair (MMR). Inactivation of both mutation-avoidance systems results in extremely high mutability that can lead to error catastrophe. High mutability and the likelihood of cancer can be caused by mutations and epigenetic changes that reduce MMR. Hypermutability can also be caused by external factors that directly inhibit MMR. Identifying such factors has important implications for understanding the role of the environment in genome stability. We found that chronic exposure of yeast to environmentally relevant concentrations of cadmium, a known human carcinogen, can result in extreme hypermutability. The mutation specificity along with responses in proofreading-deficient and MMR-deficient mutants indicate that cadmium reduces the capacity for MMR of small misalignments and base-base mismatches. In extracts of human cells, cadmium inhibited at least one step leading to mismatch removal. Together, our data show that a high level of genetic instability can result from environmental impediment of a mutation-avoidance system.


Nature Chemical Biology | 2010

Genome instability due to ribonucleotide incorporation into DNA

Stephanie A. Nick McElhinny; Dinesh Kumar; Alan B. Clark; Danielle L. Watt; Brian E. Watts; Else-Britt Lundström; Erik Johansson; Andrei Chabes; Thomas A. Kunkel

Maintaining the chemical identity of DNA depends on ribonucleotide exclusion by DNA polymerases. However, ribonucleotide exclusion during DNA synthesis in vitro is imperfect. To determine if ribonucleotides are incorporated during DNA replication in vivo, we substituted leucine or glycine for an active site methionine in yeast DNA polymerase ε (Pol ε). Compared to wild type Pol ε, ribonucleotide incorporation in vitro was 3-fold lower for M644L and 11-fold higher for M644G Pol ε. This hierarchy was re-capitulated in vivo in yeast strains lacking RNase H2. Moreover, the pol2-M644G rnh201Δ strain progressed more slowly through S-phase, had elevated dNTP pools and generated 2–5 base pair deletions in repetitive sequences at a high rate and gene orientation-dependent manner. The data indicate that ribonucleotides are incorporated during replication in vivo, that they are removed by RNase H2-dependent repair, and that defective repair results in replicative stress and genome instability via DNA strand misalignment.


Cell | 1990

A third essential DNA polymerase in S. cerevisiae

Alan Morrison; Hiroyuki Araki; Alan B. Clark; Robert K. Hamatake; Akio Sugino

DNA polymerases I and III are essential for viability of S. cerevisiae. We have cloned and analyzed POL2, the gene encoding the catalytic subunit of the third nuclear DNA polymerase, DNA polymerase II. POL2 expressed a transcript of approximately 7.5 kb and contained a reading frame that encoded a protein of calculated Mr 255,649. The N-terminal half of the predicted protein displayed relatively weak similarity of sequence to eukaryotic DNA polymerases. Disruption of the coding sequence at midpoint led to viable, slowly growing cells, which yielded a truncated polypeptide with DNA polymerase II activity, free from subunits B or C. Deletion of the reading frame resulted in inviability and the dumbbell terminal morphology that typically follows arrest of DNA replication. We conclude that three DNA polymerases are essential in yeast and argue that all three are replicases, a possibility that challenges existing models of eukaryotic DNA replication.


Journal of Biological Chemistry | 2000

Functional Interaction of Proliferating Cell Nuclear Antigen with MSH2-MSH6 and MSH2-MSH3 Complexes

Alan B. Clark; Frank Valle; Karin Drotschmann; Ronald K. Gary; Thomas A. Kunkel

Eukaryotic DNA mismatch repair requires the concerted action of several proteins, including proliferating cell nuclear antigen (PCNA) and heterodimers of MSH2 complexed with either MSH3 or MSH6. Here we report that MSH3 and MSH6, but not MSH2, contain N-terminal sequence motifs characteristic of proteins that bind to PCNA. MSH3 and MSH6 peptides containing these motifs bound PCNA, as did the intact Msh2-Msh6 complex. This binding was strongly reduced when alanine was substituted for conserved residues in the motif. Yeast strains containing alanine substitutions in the PCNA binding motif of Msh6 or Msh3 had elevated mutation rates, indicating that these interactions are important for genome stability. When human MSH3 or MSH6 peptides containing the PCNA binding motif were added to a human cell extract, mismatch repair activity was inhibited at a step preceding DNA resynthesis. Thus, MSH3 and MSH6 interactions with PCNA may facilitate early steps in DNA mismatch repair and may also be important for other roles of these eukaryotic MutS homologs.


Nature | 2011

A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers

Siwanon Jirawatnotai; Yiduo Hu; Wojciech Michowski; Joshua E. Elias; Lisa Becks; Frédéric Bienvenu; Agnieszka Zagozdzon; Tapasree Goswami; Yaoyu E. Wang; Alan B. Clark; Thomas A. Kunkel; Tanja van Harn; Bing Xia; Mick Correll; John Quackenbush; David M. Livingston; Steven P. Gygi; Piotr Sicinski

Cyclin D1 is a component of the core cell cycle machinery. Abnormally high levels of cyclin D1 are detected in many human cancer types. To elucidate the molecular functions of cyclin D1 in human cancers, we performed a proteomic screen for cyclin D1 protein partners in several types of human tumours. Analyses of cyclin D1 interactors revealed a network of DNA repair proteins, including RAD51, a recombinase that drives the homologous recombination process. We found that cyclin D1 directly binds RAD51, and that cyclin D1–RAD51 interaction is induced by radiation. Like RAD51, cyclin D1 is recruited to DNA damage sites in a BRCA2-dependent fashion. Reduction of cyclin D1 levels in human cancer cells impaired recruitment of RAD51 to damaged DNA, impeded the homologous recombination-mediated DNA repair, and increased sensitivity of cells to radiation in vitro and in vivo. This effect was seen in cancer cells lacking the retinoblastoma protein, which do not require D-cyclins for proliferation. These findings reveal an unexpected function of a core cell cycle protein in DNA repair and suggest that targeting cyclin D1 may be beneficial also in retinoblastoma-negative cancers which are currently thought to be unaffected by cyclin D1 inhibition.


Science | 2011

Mutagenic Processing of Ribonucleotides in DNA by Yeast Topoisomerase I

Nayun Kim; Shar Yin N Huang; Jessica S. Williams; Yue C. Li; Alan B. Clark; Jang Eun Cho; Thomas A. Kunkel; Yves Pommier

An enzyme that removes supercoils from DNA can cause mutations when RNA bases accidentally get incorporated into the DNA. The ribonuclease (RNase) H class of enzymes degrades the RNA component of RNA:DNA hybrids and is important in nucleic acid metabolism. RNase H2 is specialized to remove single ribonucleotides [ribonucleoside monophosphates (rNMPs)] from duplex DNA, and its absence in budding yeast has been associated with the accumulation of deletions within short tandem repeats. Here, we demonstrate that rNMP-associated deletion formation requires the activity of Top1, a topoisomerase that relaxes supercoils by reversibly nicking duplex DNA. The reported studies extend the role of Top1 to include the processing of rNMPs in genomic DNA into irreversible single-strand breaks, an activity that can have distinct mutagenic consequences and may be relevant to human disease.


Cancer Research | 2004

An Msh2 Point Mutation Uncouples DNA Mismatch Repair and Apoptosis

Diana P. Lin; Yuxun Wang; Stefan J. Scherer; Alan B. Clark; Kan Yang; Elena Avdievich; Bo Jin; Uwe Werling; Tchaiko Parris; Naoto Kurihara; Asad Umar; Raju Kucherlapati; Martin Lipkin; Thomas A. Kunkel; Winfried Edelmann

Mutations in the human DNA mismatch repair gene MSH2 are associated with hereditary nonpolyposis colorectal cancer as well as a significant proportion of sporadic colorectal cancer. The inactivation of MSH2 results in the accumulation of somatic mutations in the genome of tumor cells and resistance to the genotoxic effects of a variety of chemotherapeutic agents. Here we show that the DNA repair and DNA damage-induced apoptosis functions of Msh2 can be uncoupled using mice that carry the G674A missense mutation in the conserved ATPase domain. As a consequence, although Msh2G674A homozygous mutant mice are highly tumor prone, the onset of tumorigenesis is delayed as compared with Msh2-null mice. In addition, tumors that carry the mutant allele remain responsive to treatment with a chemotherapeutic agent. Our results indicate that Msh2-mediated apoptosis is an important component of tumor suppression and that certain MSH2 missense mutations can cause mismatch repair deficiency while retaining the signaling functions that confer sensitivity to chemotherapeutic agents.


Cell | 2007

Exonuclease-1 Deletion Impairs DNA Damage Signaling and Prolongs Lifespan of Telomere-Dysfunctional Mice

Sonja Schaetzlein; N.R. Kodandaramireddy; Zhenyu Ju; André Lechel; Anna Stepczynska; Dana R. Lilli; Alan B. Clark; Cornelia Rudolph; Florian Kühnel; Kaichun Wei; Brigitte Schlegelberger; Peter Schirmacher; Thomas A. Kunkel; Roger A. Greenberg; Winfried Edelmann; K. Lenhard Rudolph

Exonuclease-1 (EXO1) mediates checkpoint induction in response to telomere dysfunction in yeast, but it is unknown whether EXO1 has similar functions in mammalian cells. Here we show that deletion of the nuclease domain of Exo1 reduces accumulation of DNA damage and DNA damage signal induction in telomere-dysfunctional mice. Exo1 deletion improved organ maintenance and lifespan of telomere-dysfunctional mice but did not increase chromosomal instability or cancer formation. Deletion of Exo1 also ameliorated the induction of DNA damage checkpoints in response to gamma-irradiation and conferred cellular resistance to 6-thioguanine-induced DNA damage. Exo1 deletion impaired upstream induction of DNA damage responses by reducing ssDNA formation and the recruitment of Replication Protein A (RPA) and ATR at DNA breaks. Together, these studies provide evidence that EXO1 contributes to DNA damage signal induction in mammalian cells, and deletion of Exo1 can prolong survival in the context of telomere dysfunction.


Molecular Cell | 2013

Ribonucleotides Are Signals for Mismatch Repair of Leading-Strand Replication Errors

Scott A. Lujan; Jessica S. Williams; Anders R. Clausen; Alan B. Clark; Thomas A. Kunkel

To maintain genome stability, mismatch repair of nuclear DNA replication errors must be directed to the nascent strand, likely by DNA ends and PCNA. Here we show that the efficiency of mismatch repair in Saccharomyces cerevisiae is reduced by inactivating RNase H2, which nicks DNA containing ribonucleotides incorporated during replication. In strains encoding mutator polymerases, this reduction is preferential for repair of mismatches made by leading-strand DNA polymerase ε as compared to lagging-strand DNA polymerase δ. The results suggest that RNase-H2-dependent processing of ribonucleotides transiently present in DNA after replication may direct mismatch repair to the continuously replicated nascent leading strand.

Collaboration


Dive into the Alan B. Clark's collaboration.

Top Co-Authors

Avatar

Thomas A. Kunkel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Scott A. Lujan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dmitry A. Gordenin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jessica S. Williams

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael A. Resnick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Winfried Edelmann

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiep T. Tran

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asad Umar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge