Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan C. Bovik is active.

Publication


Featured researches published by Alan C. Bovik.


IEEE Transactions on Image Processing | 2004

Image quality assessment: from error visibility to structural similarity

Zhou Wang; Alan C. Bovik; Hamid R. Sheikh; Eero P. Simoncelli

Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.


IEEE Signal Processing Letters | 2002

A universal image quality index

Zhou Wang; Alan C. Bovik

We propose a new universal objective image quality index, which is easy to calculate and applicable to various image processing applications. Instead of using traditional error summation methods, the proposed index is designed by modeling any image distortion as a combination of three factors: loss of correlation, luminance distortion, and contrast distortion. Although the new index is mathematically defined and no human visual system model is explicitly employed, our experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error. Demonstrative images and an efficient MATLAB implementation of the algorithm are available online at http://anchovy.ece.utexas.edu//spl sim/zwang/research/quality_index/demo.html.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 1990

Multichannel texture analysis using localized spatial filters

Alan C. Bovik; Marianna Clark; Wilson S. Geisler

A computational approach for analyzing visible textures is described. Textures are modeled as irradiance patterns containing a limited range of spatial frequencies, where mutually distinct textures differ significantly in their dominant characterizing frequencies. By encoding images into multiple narrow spatial frequency and orientation channels, the slowly varying channel envelopes (amplitude and phase) are used to segregate textural regions of different spatial frequency, orientation, or phase characteristics. Thus, an interpretation of image texture as a region code, or carrier of region information, is emphasized. The channel filters used, known as the two-dimensional Gabor functions, are useful for these purposes in several senses: they have tunable orientation and radial frequency bandwidths and tunable center frequencies, and they optimally achieve joint resolution in space and in spatial frequency. By comparing the channel amplitude responses, one can detect boundaries between textures. Locating large variations in the channel phase responses allows discontinuities in the texture phase to be detected. Examples are given of both types of texture processing using a variety of real and synthetic textures. >


IEEE Signal Processing Magazine | 2009

Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures

Zhou Wang; Alan C. Bovik

In this article, we have reviewed the reasons why we (collectively) want to love or leave the venerable (but perhaps hoary) MSE. We have also reviewed emerging alternative signal fidelity measures and discussed their potential application to a wide variety of problems. The message we are trying to send here is not that one should abandon use of the MSE nor to blindly switch to any other particular signal fidelity measure. Rather, we hope to make the point that there are powerful, easy-to-use, and easy-to-understand alternatives that might be deployed depending on the application environment and needs. While we expect (and indeed, hope) that the MSE will continue to be widely used as a signal fidelity measure, it is our greater desire to see more advanced signal fidelity measures being used, especially in applications where perceptual criteria might be relevant. Ideally, the performance of a new signal processing algorithm might be compared to other algorithms using several fidelity criteria. Lastly, we hope that we have given further motivation to the community to consider recent advanced signal fidelity measures as design criteria for optimizing signal processing algorithms and systems. It is in this direction that we believe that the greatest benefit eventually lies.


asilomar conference on signals, systems and computers | 2003

Multiscale structural similarity for image quality assessment

Zhou Wang; Eero P. Simoncelli; Alan C. Bovik

The structural similarity image quality paradigm is based on the assumption that the human visual system is highly adapted for extracting structural information from the scene, and therefore a measure of structural similarity can provide a good approximation to perceived image quality. This paper proposes a multiscale structural similarity method, which supplies more flexibility than previous single-scale methods in incorporating the variations of viewing conditions. We develop an image synthesis method to calibrate the parameters that define the relative importance of different scales. Experimental comparisons demonstrate the effectiveness of the proposed method.


IEEE Transactions on Image Processing | 2012

No-Reference Image Quality Assessment in the Spatial Domain

Anish Mittal; Anush K. Moorthy; Alan C. Bovik

We propose a natural scene statistic-based distortion-generic blind/no-reference (NR) image quality assessment (IQA) model that operates in the spatial domain. The new model, dubbed blind/referenceless image spatial quality evaluator (BRISQUE) does not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized luminance coefficients to quantify possible losses of “naturalness” in the image due to the presence of distortions, thereby leading to a holistic measure of quality. The underlying features used derive from the empirical distribution of locally normalized luminances and products of locally normalized luminances under a spatial natural scene statistic model. No transformation to another coordinate frame (DCT, wavelet, etc.) is required, distinguishing it from prior NR IQA approaches. Despite its simplicity, we are able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms. BRISQUE has very low computational complexity, making it well suited for real time applications. BRISQUE features may be used for distortion-identification as well. To illustrate a new practical application of BRISQUE, we describe how a nonblind image denoising algorithm can be augmented with BRISQUE in order to perform blind image denoising. Results show that BRISQUE augmentation leads to performance improvements over state-of-the-art methods. A software release of BRISQUE is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip for public use and evaluation.


Signal Processing-image Communication | 2004

Video Quality Assessment Based on Structural Distortion Measurement

Zhou Wang; Ligang Lu; Alan C. Bovik

Objective image and video quality measures play important roles in a variety of image and video pro- cessing applications, such as compression, communication, printing, analysis, registration, restoration, enhancement and watermarking. Most proposed quality assessment ap- proaches in the literature are error sensitivity-based meth- ods. In this paper, we follow a new philosophy in designing image and video quality metrics, which uses structural dis- tortion as an estimate of perceived visual distortion. A com- putationally ecient approach is developed for full-reference (FR) video quality assessment. The algorithm is tested on the video quality experts group (VQEG) Phase I FR-TV test data set. Keywords—Image quality assessment, video quality assess- ment, human visual system, error sensitivity, structural dis- tortion, video quality experts group (VQEG)


international conference on image processing | 2002

No-reference perceptual quality assessment of JPEG compressed images

Zhou Wang; Hamid R. Sheikh; Alan C. Bovik

Human observers can easily assess the quality of a distorted image without examining the original image as a reference. By contrast, designing objective No-Reference (NR) quality measurement algorithms is a very difficult task. Currently, NR quality assessment is feasible only when prior knowledge about the types of image distortion is available. This research aims to develop NR quality measurement algorithms for JPEG compressed images. First, we established a JPEG image database and subjective experiments were conducted on the database. We show that Peak Signal-to-Noise Ratio (PSNR), which requires the reference images, is a poor indicator of subjective quality. Therefore, tuning an NR measurement model towards PSNR is not an appropriate approach in designing NR quality metrics. Furthermore, we propose a computational and memory efficient NR quality assessment model for JPEG images. Subjective test results are used to train the model, which achieves good quality prediction performance.


IEEE Transactions on Image Processing | 2010

Study of Subjective and Objective Quality Assessment of Video

Kalpana Seshadrinathan; Rajiv Soundararajan; Alan C. Bovik; Lawrence K. Cormack

We present the results of a recent large-scale subjective study of video quality on a collection of videos distorted by a variety of application-relevant processes. Methods to assess the visual quality of digital videos as perceived by human observers are becoming increasingly important, due to the large number of applications that target humans as the end users of video. Owing to the many approaches to video quality assessment (VQA) that are being developed, there is a need for a diverse independent public database of distorted videos and subjective scores that is freely available. The resulting Laboratory for Image and Video Engineering (LIVE) Video Quality Database contains 150 distorted videos (obtained from ten uncompressed reference videos of natural scenes) that were created using four different commonly encountered distortion types. Each video was assessed by 38 human subjects, and the difference mean opinion scores (DMOS) were recorded. We also evaluated the performance of several state-of-the-art, publicly available full-reference VQA algorithms on the new database. A statistical evaluation of the relative performance of these algorithms is also presented. The database has a dedicated web presence that will be maintained as long as it remains relevant and the data is available online.


IEEE Transactions on Image Processing | 2011

Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality

Anush K. Moorthy; Alan C. Bovik

Our approach to blind image quality assessment (IQA) is based on the hypothesis that natural scenes possess certain statistical properties which are altered in the presence of distortion, rendering them un-natural; and that by characterizing this un-naturalness using scene statistics, one can identify the distortion afflicting the image and perform no-reference (NR) IQA. Based on this theory, we propose an (NR)/blind algorithm-the Distortion Identification-based Image Verity and INtegrity Evaluation (DIIVINE) index-that assesses the quality of a distorted image without need for a reference image. DIIVINE is based on a 2-stage framework involving distortion identification followed by distortion-specific quality assessment. DIIVINE is capable of assessing the quality of a distorted image across multiple distortion categories, as against most NR IQA algorithms that are distortion-specific in nature. DIIVINE is based on natural scene statistics which govern the behavior of natural images. In this paper, we detail the principles underlying DIIVINE, the statistical features extracted and their relevance to perception and thoroughly evaluate the algorithm on the popular LIVE IQA database. Further, we compare the performance of DIIVINE against leading full-reference (FR) IQA algorithms and demonstrate that DIIVINE is statistically superior to the often used measure of peak signal-to-noise ratio (PSNR) and statistically equivalent to the popular structural similarity index (SSIM). A software release of DIIVINE has been made available online: http://live.ece.utexas.edu/research/quality/DIIVINE_release.zip for public use and evaluation.

Collaboration


Dive into the Alan C. Bovik's collaboration.

Top Co-Authors

Avatar

Lawrence K. Cormack

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anush K. Moorthy

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Mia K. Markey

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Zhou Wang

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar

Brian L. Evans

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kenneth R. Diller

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Robert W. Heath

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shanti J. Aggarwal

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge