Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan C. Hicks is active.

Publication


Featured researches published by Alan C. Hicks.


Science | 2009

Bat White-Nose Syndrome: An Emerging Fungal Pathogen?

David S. Blehert; Alan C. Hicks; Melissa J. Behr; Carol U. Meteyer; Brenda M. Berlowski-Zier; Elizabeth L. Buckles; Jeremy T. H. Coleman; Scott R. Darling; Andrea Gargas; Robyn Niver; Joseph C. Okoniewski; Robert J. Rudd; Ward B. Stone

White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychro-philic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS.


Science | 2010

An emerging disease causes regional population collapse of a common North American bat species.

Winifred F. Frick; Jacob F. Pollock; Alan C. Hicks; Kate E. Langwig; D. Scott Reynolds; Gregory G. Turner; Calvin M. Butchkoski; Thomas H. Kunz

Threats to and from Bats Bats appear to be able to host an assortment of alarming pathogens, which, if they do not extirpate the bats, have implications for human health (see the Perspective by Daszak). For example, exposure to bats is the main source of human rabies in the Americas. But rabies is not generally transmitted among people; humans are a dead end for the virus. Streicker et al. (p. 676, see the cover) show that rabies virus lineages tend to be specific for bat lineages. It seems that although rabies viruses have the potential for rapid evolution, this property alone is not enough to overcome genetic barriers, which inhibit the onward transmission of rabies virus into a new species. White-nose syndrome, an exotic fungal infection of bats, has, over the past 3 years, spread from upstate New York to West Virginia, killing on average 70% of the animals in a hibernating colony. The infection makes bats restless over winter when they should be dormant, which makes them exhaust their fat reserves, resulting in the death of over a million bats. Frick et al. (p. 679) have analyzed population data collected on bats in the northeastern United States for the past 30 years and show that, mainly owing to white-nose syndrome, the once abundant little brown bat is heading for regional extinction in the next 16 years or so. This scale of loss of an insectivorous mammal is expected to have repercussions for ecosystem integrity and for the economic costs of agricultural pest control. Like the passenger pigeon, millions of little brown bats face the possibility of rapid extinction, this time from disease. White-nose syndrome (WNS) is an emerging disease affecting hibernating bats in eastern North America that causes mass mortality and precipitous population declines in winter hibernacula. First discovered in 2006 in New York State, WNS is spreading rapidly across eastern North America and currently affects seven species. Mortality associated with WNS is causing a regional population collapse and is predicted to lead to regional extinction of the little brown myotis (Myotis lucifugus), previously one of the most common bat species in North America. Novel diseases can have serious impacts on naïve wildlife populations, which in turn can have substantial impacts on ecosystem integrity.


Nature | 2011

Experimental infection of bats with Geomyces destructans causes white-nose syndrome

Jeffrey M. Lorch; Carol U. Meteyer; Melissa J. Behr; Justin G. Boyles; Paul M. Cryan; Alan C. Hicks; Anne E. Ballmann; Jeremy T. H. Coleman; David N. Redell; DeeAnn M. Reeder; David S. Blehert

White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America. The disease’s name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS. However, the role of G. destructans in WNS remains controversial because evidence to implicate the fungus as the primary cause of this disease is lacking. The debate is fuelled, in part, by the assumption that fungal infections in mammals are most commonly associated with immune system dysfunction. Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats of Europe, where no unusual bat mortality events have been reported, has generated further speculation that the fungus is an opportunistic pathogen and that other unidentified factors are the primary cause of WNS. Here we demonstrate that exposure of healthy little brown bats (Myotis lucifugus) to pure cultures of G. destructans causes WNS. Live G. destructans was subsequently cultured from diseased bats, successfully fulfilling established criteria for the determination of G. destructans as a primary pathogen. We also confirmed that WNS can be transmitted from infected bats to healthy bats through direct contact. Our results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America may represent translocation of the fungus to a region with a naive population of animals. Demonstration of causality is an instrumental step in elucidating the pathogenesis and epidemiology of WNS and in guiding management actions to preserve bat populations against the novel threat posed by this devastating infectious disease.


Journal of Veterinary Diagnostic Investigation | 2009

Histopathologic criteria to confirm white-nose syndrome in bats

Carol U. Meteyer; Elizabeth L. Buckles; David S. Blehert; Alan C. Hicks; D. Earl Green; Valerie I. Shearn-Bochsler; Nancy J. Thomas; Andrea Gargas; Melissa J. Behr

White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid–Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 μm in diameter to irregular walls measuring 3–5 μm in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 μm wide and 7.5 μm in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.


Ecology Letters | 2012

Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome.

Kate E. Langwig; Winifred F. Frick; Jason T. Bried; Alan C. Hicks; Thomas H. Kunz; A. Marm Kilpatrick

Disease has caused striking declines in wildlife and threatens numerous species with extinction. Theory suggests that the ecology and density-dependence of transmission dynamics can determine the probability of disease-caused extinction, but few empirical studies have simultaneously examined multiple factors influencing disease impact. We show, in hibernating bats infected with Geomyces destructans, that impacts of disease on solitary species were lower in smaller populations, whereas in socially gregarious species declines were equally severe in populations spanning four orders of magnitude. However, as these gregarious species declined, we observed decreases in social group size that reduced the likelihood of extinction. In addition, disease impacts in these species increased with humidity and temperature such that the coldest and driest roosts provided initial refuge from disease. These results expand our theoretical framework and provide an empirical basis for determining which host species are likely to be driven extinct while management action is still possible.


PLOS ONE | 2012

Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome.

DeeAnn M. Reeder; Craig L. Frank; Gregory G. Turner; Carol U. Meteyer; Allen Kurta; Eric R. Britzke; Megan E. Vodzak; Scott R. Darling; Craig W. Stihler; Alan C. Hicks; Roymon Jacob; Laura E. Grieneisen; Sarah A. Brownlee; Laura K. Muller; David S. Blehert

White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.


PLOS ONE | 2010

Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS).

Vishnu Chaturvedi; Deborah J. Springer; Melissa J. Behr; Rama Ramani; Xiaojiang Li; Marcia K. Peck; Ping Ren; Dianna J. Bopp; Britta Wood; William A. Samsonoff; Calvin M. Butchkoski; Alan C. Hicks; Ward B. Stone; Robert J. Rudd; Sudha Chaturvedi

Background Massive die-offs of little brown bats (Myotis lucifugus) have been occurring since 2006 in hibernation sites around Albany, New York, and this problem has spread to other States in the Northeastern United States. White cottony fungal growth is seen on the snouts of affected animals, a prominent sign of White Nose Syndrome (WNS). A previous report described the involvement of the fungus Geomyces destructans in WNS, but an identical fungus was recently isolated in France from a bat that was evidently healthy. The fungus has been recovered sparsely despite plentiful availability of afflicted animals. Methodology/Principal Findings We have investigated 100 bat and environmental samples from eight affected sites in 2008. Our findings provide strong evidence for an etiologic role of G. destructans in bat WNS. (i) Direct smears from bat snouts, Periodic Acid Schiff-stained tissue sections from infected tissues, and scanning electron micrographs of bat tissues all showed fungal structures similar to those of G. destructans. (ii) G. destructans DNA was directly amplified from infected bat tissues, (iii) Isolations of G. destructans in cultures from infected bat tissues showed 100% DNA match with the fungus present in positive tissue samples. (iv) RAPD patterns for all G. destructans cultures isolated from two sites were indistinguishable. (v) The fungal isolates showed psychrophilic growth. (vi) We identified in vitro proteolytic activities suggestive of known fungal pathogenic traits in G. destructans. Conclusions/Significance Further studies are needed to understand whether G. destructans WNS is a symptom or a trigger for bat mass mortality. The availability of well-characterized G. destructans strains should promote an understanding of bat–fungus relationships, and should aid in the screening of biological and chemical control agents.


Journal of Wildlife Management | 2006

Predicting Minimum Habitat Characteristics for the Indiana Bat in the Champlain Valley

Kristen S. Watrous; Therese M. Donovan; Ruth M. Mickey; Scott R. Darling; Alan C. Hicks; Susanna L. Von Oettingen

Abstract Predicting potential habitat across a landscape for rare species is extremely challenging. However, partitioned Mahalanobis D2 methods avoid pitfalls commonly encountered when surveying rare species by using data collected only at known species locations. Minimum habitat requirements are then determined by examining a principal components analysis to find consistent habitat characteristics across known locations. We used partitioned D2 methods to examine minimum habitat requirements of Indiana bats (Myotis sodalis) in the Champlain Valley of Vermont and New York, USA, across 7 spatial scales and map potential habitat for the species throughout the same area. We radiotracked 24 female Indiana bats to their roost trees and across their nighttime foraging areas to collect habitat characteristics at 7 spatial scales: 1) roost trees, 2) 0.1-ha circular plots surrounding the roost trees, 3) home ranges, and 4–7) 0.5-km, 1-km, 2-km, and 3-km buffers surrounding the roost tree. Roost trees (n = 50) typically were tall, dead, large-diameter trees with exfoliating bark, located at low elevations and close to water. Trees surrounding roosts typically were smaller in diameter and shorter in height, but they had greater soundness than the roost trees. We documented 14 home ranges in areas of diverse, patchy land cover types that were close to water with east-facing aspects. Across all landscape extents, area of forest within roost-tree buffers and the aspect across those buffers were the most consistent features. Predictive maps indicated that suitable habitat ranged from 4.7–8.1% of the area examined within the Champlain Valley. These habitat models further understanding of Indiana bat summer habitat by indicating minimum habitat characteristics at multiple scales and can be used to aid management decisions by highlighting potential habitat. Nonetheless, information on juvenile production and recruitment is lacking; therefore, assessments of Indiana bat habitat quality in the region are still incomplete.


Journal of Fish and Wildlife Management | 2011

Little Brown Myotis Persist Despite Exposure to White-Nose Syndrome

Christopher A. Dobony; Alan C. Hicks; Kate E. Langwig; Ryan I. von Linden; Joseph C. Okoniewski; Raymond E. Rainbolt

Abstract We monitored a maternity colony of little brown myotis Myotis lucifugus on Fort Drum Military Installation in northern New York in 2009 and 2010 for impacts associated with white-nose synd...


American Midland Naturalist | 2006

Description of Spring Roost Trees Used by Female Indiana Bats (Myotis sodalis) in the Lake Champlain Valley of Vermont and New York

Eric R. Britzke; Alan C. Hicks; Susanna L. Von Oettingen; Scott R. Darling

Abstract Extensive effort has been directed at the roosting ecology of the federally endangered Indiana bat (Myotis sodalis) during the maternity season; however, spring roosting ecology has received much less attention. In April 2002, radio transmitters were attached to the back of 19 female Indiana bats as they emerged from a hibernaculum in northeastern New York. Thirty-nine roost trees were found in the vicinity of the Lake Champlain Valley of New York and Vermont over the span of 224 bat days (i.e., 1 bat located for 1 d equals 1 bat day). Distances from hibernaculum to roost trees ranged from 14.6 to 40.0 km (mean = 26.9 km). Shagbark hickory (Carya ovata) was the most common (33.3% of all trees, 39.7% of all bat days) of 11 tree species used. Roost trees had a mean diameter of 45.6 cm, were 18.9 m tall and were similar in structure to those used during summer by Indiana bats elsewhere in their range. This study provides the first large-scale examination of trees used by female Indiana bats after spring emergence, supplying critical life history information useful for the conservation of this species.

Collaboration


Dive into the Alan C. Hicks's collaboration.

Top Co-Authors

Avatar

Carol U. Meteyer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David S. Blehert

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Eric R. Britzke

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy T. H. Coleman

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Joseph C. Okoniewski

New York State Department of Environmental Conservation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne E. Ballmann

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Carl Herzog

New York State Department of Environmental Conservation

View shared research outputs
Top Co-Authors

Avatar

David H. Good

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge