Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Carvalho Andrade is active.

Publication


Featured researches published by Alan Carvalho Andrade.


Science | 2014

The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

Lorenzo Carretero-Paulet; Alexis Dereeper; Gaëtan Droc; Romain Guyot; Marco Pietrella; Chunfang Zheng; Adriana Alberti; François Anthony; Giuseppe Aprea; Jean-Marc Aury; Pascal Bento; Maria Bernard; Stéphanie Bocs; Claudine Campa; Alberto Cenci; Marie Christine Combes; Dominique Crouzillat; Corinne Da Silva; Loretta Daddiego; Fabien De Bellis; Stéphane Dussert; Olivier Garsmeur; Thomas Gayraud; Valentin Guignon; Katharina Jahn; Véronique Jamilloux; Thierry Joët; Karine Labadie; Tianying Lan; Julie Leclercq

Coffee, tea, and chocolate converge Caffeine has evolved multiple times among plant species, but no one knows whether these events involved similar genes. Denoeud et al. sequenced the Coffea canephora (coffee) genome and identified a conserved gene order (see the Perspective by Zamir). Although this species underwent fewer genome duplications than related species, the relevant caffeine genes experienced tandem duplications that expanded their numbers within this species. Scientists have seen similar but independent expansions in distantly related species of tea and cacao, suggesting that caffeine might have played an adaptive role in coffee evolution. Science, this issue p. 1181; see also p. 1124 The genetic origins of coffee’s constituents reveal intriguing links to cacao and tea. Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Molecular Genetics and Genomics | 1997

Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters

G. Del Sorbo; Alan Carvalho Andrade; J. G. M. Van Nistelrooy; J.A.L. van Kan; Elisabetta Balzi; M. A. De Waard

Two single-copy genes, designated atrA and atrB (ATP-binding cassette transporter A and B), were cloned from the filamentous fungus Aspergillus nidulans and sequenced. Based on the presence of conserved motifs and on hydropathy analysis, the products encoded by atrA and atrB can be regarded as novel members of the ATP-binding cassette (ABC) superfamily of membrane transporters. Both products share the same topology as the ABC transporters PDR5 and SNQ2 from Saccharomyces cerevisiae and CDR1 from Candida albicans, which are involved in multidrug resistance of these yeasts. Significant homology also occurs between the ATP-binding cassettes of AtrA and AtrB, and those of mammalian ABC transporters (P-glycoproteins). The transcription of atrA and, in particular, atrB in mycelium of A. nidulans is strongly enhanced by treatment with several drugs, including antibiotics, azole fungicides and plant defense toxins. The enhanced transcription is detectable within a few minutes after drug treatment and coincides with the beginning of energy-dependent drug efflux activity, reported previously in the fungus for azole fungicides. Transcription of the atr genes has been studied in a wild-type and in a series of isogenic strains carrying the imaA and/or imaB genes, which confer multidrug resistance to various toxic compounds such as the azole fungicide imazalil. atrB is constitutively transcribed at a low level in the wild-type and in strains carrying imaA or imaB. Imazalil treatment enhances transcription of atrB to a similar extent in all strains tested. atrA, unlike atrB, displays a relatively high level of constitutive expression in mutants carrying imaB. Imazalil enhances transcription of atrA more strongly in imaB mutants, suggesting that the imaB locus regulates atrA. Functional analysis demonstrated that cDNA of atrB can complement the drug hypersensitivity associated with PDR5 deficiency in S. cerevisiae.


Brazilian Journal of Plant Physiology | 2006

Brazilian coffee genome project: an EST-based genomic resource

Luiz Gonzaga Esteves Vieira; Alan Carvalho Andrade; Carlos Augusto Colombo; Ana Heloneida de Araújo Moraes; Ângela Metha; Angélica Carvalho de Oliveira; Carlos Alberto Labate; Celso Luis Marino; Claudia B. Monteiro-Vitorello; Damares C. Monte; Éder A. Giglioti; Edna T. Kimura; Eduardo Romano; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Elionor Rita Pereira de Almeida; Erika C. Jorge; Erika V.S. Albuquerque; Felipe Rodrigues da Silva; Felipe Vinecky; Haiko Enok Sawazaki; Hamza Fahmi A. Dorry; Helaine Carrer; Ilka Nacif Abreu; João A. N. Batista; João Batista Teixeira; João Paulo Kitajima; Karem Guimarães Xavier; Liziane Maria de Lima; Luis Eduardo Aranha Camargo

Coffee is one of the most valuable agricultural commodities and ranks second on international trade exchanges. The genus Coffea belongs to the Rubiaceae family which includes other important plants. The genus contains about 100 species but commercial production is based only on two species, Coffea arabica and Coffea canephora that represent about 70 % and 30 % of the total coffee market, respectively. The Brazilian Coffee Genome Project was designed with the objective of making modern genomics resources available to the coffee scientific community, working on different aspects of the coffee production chain. We have single-pass sequenced a total of 214,964 randomly picked clones from 37 cDNA libraries of C. arabica, C. canephora and C. racemosa, representing specific stages of cells and plant development that after trimming resulted in 130,792, 12,381 and 10,566 sequences for each species, respectively. The ESTs clustered into 17,982 clusters and 32,155 singletons. Blast analysis of these sequences revealed that 22 % had no significant matches to sequences in the National Center for Biotechnology Information database (of known or unknown function). The generated coffee EST database resulted in the identification of close to 33,000 different unigenes. Annotated sequencing results have been stored in an online database at http://www.lge.ibi.unicamp.br/cafe. Resources developed in this project provide genetic and genomic tools that may hold the key to the sustainability, competitiveness and future viability of the coffee industry in local and international markets.


Journal of Experimental Botany | 2012

Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora

Pierre Marraccini; Felipe Vinecky; Gabriel Sergio Costa Alves; Humberto J.O. Ramos; Sonia Elbelt; Natalia Gomes Vieira; Fernanda A Carneiro; Patricia. S Sujii; Jean Carlos Alekcevetch; Vânia Aparecida Silva; Fábio M. DaMatta; Maria Amélia Gava Ferrão; Thierry Leroy; David Pot; Luiz Gonzaga Esteves Vieira; Felipe Rodrigues da Silva; Alan Carvalho Andrade

The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora.


BMC Plant Biology | 2011

An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

Jorge Mc Mondego; Ramon Vidal; Marcelo Falsarella Carazzolle; Eric Tokuda; Lucas Pedersen Parizzi; Gustavo Gl Costa; Luiz Fp Pereira; Alan Carvalho Andrade; Carlos Augusto Colombo; Luiz G. E. Vieira; Gonçalo Ag Pereira

BackgroundCoffee is one of the worlds most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency.ResultsAssembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories.ConclusionWe present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance.


Plant Physiology | 2010

A High-Throughput Data Mining of Single Nucleotide Polymorphisms in Coffea Species Expressed Sequence Tags Suggests Differential Homeologous Gene Expression in the Allotetraploid Coffea arabica

Ramon Olivieira Vidal; Jorge Maurício Costa Mondego; David Pot; Alinne Batista Ambrosio; Alan Carvalho Andrade; Luiz Filipe Protasio Pereira; Carlos Augusto Colombo; Luiz Gonzaga Esteves Vieira; Marcelo Falsarella Carazzolle; Gonçalo Amarante Guimarães Pereira

Polyploidization constitutes a common mode of evolution in flowering plants. This event provides the raw material for the divergence of function in homeologous genes, leading to phenotypic novelty that can contribute to the success of polyploids in nature or their selection for use in agriculture. Mounting evidence underlined the existence of homeologous expression biases in polyploid genomes; however, strategies to analyze such transcriptome regulation remained scarce. Important factors regarding homeologous expression biases remain to be explored, such as whether this phenomenon influences specific genes, how paralogs are affected by genome doubling, and what is the importance of the variability of homeologous expression bias to genotype differences. This study reports the expressed sequence tag assembly of the allopolyploid Coffea arabica and one of its direct ancestors, Coffea canephora. The assembly was used for the discovery of single nucleotide polymorphisms through the identification of high-quality discrepancies in overlapped expressed sequence tags and for gene expression information indirectly estimated by the transcript redundancy. Sequence diversity profiles were evaluated within C. arabica (Ca) and C. canephora (Cc) and used to deduce the transcript contribution of the Coffea eugenioides (Ce) ancestor. The assignment of the C. arabica haplotypes to the C. canephora (CaCc) or C. eugenioides (CaCe) ancestral genomes allowed us to analyze gene expression contributions of each subgenome in C. arabica. In silico data were validated by the quantitative polymerase chain reaction and allele-specific combination TaqMAMA-based method. The presence of differential expression of C. arabica homeologous genes and its implications in coffee gene expression, ontology, and physiology are discussed.


PLOS ONE | 2013

Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes.

Fabrício R. Lopes; Daudi Jjingo; Carlos Roberto Maximiano da Silva; Alan Carvalho Andrade; Pierre Marraccini; João Batista Teixeira; Marcelo Falsarella Carazzolle; Gonçalo Amarante Guimarães Pereira; Luiz Filipe Protasio Pereira; André Luís Laforga Vanzela; Lu Wang; King Jordan; Claudia Marcia Aparecida Carareto

Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.


Plant Science | 2014

Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane

Rafaela Ribeiro Reis; Bárbara Andrade Dias Brito da Cunha; Polyana Kelly Martins; Maria Thereza Bazzo Martins; Jean Carlos Alekcevetch; Antônio Chalfun-Júnior; Alan Carvalho Andrade; Ana Paula Ribeiro; Feng Qin; Junya Mizoi; Kazuko Yamaguchi-Shinozaki; Kazuo Nakashima; Josirley de Fátima Corrêa Carvalho; Carlos Antônio Ferreira de Sousa; Alexandre Lima Nepomuceno; Adilson Kenji Kobayashi

Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty.


Advances in Botanical Research | 2010

Advances in Coffea Genomics

Alexandre de Kochko; Sélastique Akaffou; Alan Carvalho Andrade; Claudine Campa; Dominique Crouzillat; Romain Guyot; P. Hamon; Ray Ming; Lukas A. Mueller; Valérie Poncet; Christine Tranchant-Dubreuil; Serge Hamon

Abstract Coffee is the second most valuable commodity exported by developing countries. The Coffea genus comprises over 103 species but coffee production uses only two species throughout the tropics: Coffea canephora, which is self-sterile and diploid and better known as Robusta, and C. arabica, which is self-fertile and tetraploid. With the arrival of new analytical technologies and the start of genome sequencing projects, it was clearly time to review the state of the art of coffee genetics and genomics. In the first part of this chapter, we present the main results concerning genetic diversity and phylogeny – the most advanced fields – based on large molecular marker sets, such as random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), intersimple sequence repeat (ISSR), single sequence repeats (SSRs), or conserved orthologue set (COS), which are mainly polymerase chain reaction (PCR) based. These markers also enable the construction of genetic maps and the identification of quantitative trait loci (QTLs) for both morphological and biochemical traits. In the second part, after reviewing current knowledge on variation in coffee genome size and insights into cytogenetics, we focus on currently available genomic resources and web facilities. Large sets of expressed sequences tags (ESTs) and bacterial artificial chromosome (BAC) libraries for both C. canephora and C. arabica have been obtained along with information on genes and specific metabolic pathways. In the final section, we describe recently designed tools and their ultimate goal, which is to facilitate the sequencing, assembly and annotation of the first Coffea genome. We are at the gate of a new era of scientific approaches to coffee that should lead to a better understanding of phylogenetic relationships and genome evolution within the genus. Finally, taken together, this information should help develop improved varieties to meet the new challenges represented by ongoing radical changes in the environment.


Archive | 2008

Genomics of Coffee One of the World’s Largest Traded Commodities

Philippe Lashermes; Alan Carvalho Andrade; Hervé Etienne

Coffee is one of the world’s most valuable agricultural export commodities. In particular, coffee is a key export and cash crop in numerous tropical and subtropical countries having a generally favorable impact on the social and physical environment.While coffee species belong to the Rubiaceae family, one of the largest tropical angiosperm families, commercial production relies mainly on two species, Coffea arabica L. and Coffea canephora Pierre, known as Robusta. Although a considerable genetic diversity is potentially available, coffee breeding is still a long and difficult process. Nevertheless, genomic approaches offer feasible strategies to decipher the genetic and molecular bases of important biological traits in coffee tree species that are relevant to the growers, processors, and consumers. This knowledge is fundamental to allow efficient use and preservation of coffee genetic resources for the development of improved cultivars in terms of quality and reduced conomic and environmental costs. This review focuses on the recent progress of coffee genomics in relation to crop improvement.

Collaboration


Dive into the Alan Carvalho Andrade's collaboration.

Top Co-Authors

Avatar

Pierre Marraccini

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Gabriel Sergio Costa Alves

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Felipe Vinecky

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Gustavo Costa Rodrigues

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Natalia Gomes Vieira

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Thierry Leroy

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

David Pot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Fernanda A Carneiro

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Erica C.S. Rego

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Luciana Pereira Freire

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Researchain Logo
Decentralizing Knowledge