Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan D. D’Andrea is active.

Publication


Featured researches published by Alan D. D’Andrea.


Cell | 2013

Chromatin Remodeling at DNA Double-Strand Breaks

Brendan D. Price; Alan D. D’Andrea

DNA double-strand breaks (DSBs) can arise from multiple sources, including exposure to ionizing radiation. The repair of DSBs involves both posttranslational modification of nucleosomes and concentration of DNA-repair proteins at the site of damage. Consequently, nucleosome packing and chromatin architecture surrounding the DSB may limit the ability of the DNA-damage response to access and repair the break. Here, we review early chromatin-based events that promote the formation of open, relaxed chromatin structures at DSBs and that allow the DNA-repair machinery to access the spatially confined region surrounding the DSB, thereby facilitating mammalian DSB repair.


Trends in Cell Biology | 2016

Repair Pathway Choices and Consequences at the Double-Strand Break

Raphael Ceccaldi; Beatrice Rondinelli; Alan D. D’Andrea

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.


Journal of Clinical Investigation | 2012

Molecular pathogenesis and clinical management of Fanconi anemia.

Younghoon Kee; Alan D. D’Andrea

Fanconi anemia (FA) is a rare genetic disorder associated with a high frequency of hematological abnormalities and congenital anomalies. Based on multilateral efforts from basic scientists and clinicians, significant advances in our knowledge of FA have been made in recent years. Here we review the clinical features, the diagnostic criteria, and the current and future therapies of FA and describe the current understanding of the molecular basis of the disease.


Journal of Clinical Investigation | 2007

Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated

Richard D. Kennedy; Clark C. Chen; Patricia Stuckert; Elyse M. Archila; Michelle de la Vega; Lisa A. Moreau; Akiko Shimamura; Alan D. D’Andrea

The Fanconi anemia (FA) pathway maintains genomic stability in replicating cells. Some sporadic breast, ovarian, pancreatic, and hematological tumors are deficient in FA pathway function, resulting in sensitivity to DNA-damaging agents. FA pathway dysfunction in these tumors may result in hyperdependence on alternative DNA repair pathways that could be targeted as a treatment strategy. We used a high-throughput siRNA screening approach that identified ataxia telangiectasia mutated (ATM) as a critical kinase for FA pathway-deficient human fibroblasts. Human fibroblasts and murine embryonic fibroblasts deficient for the FA pathway were observed to have constitutive ATM activation and Fancg(-/-)Atm(-/-) mice were found to be nonviable. Abrogation of ATM function in FA pathway-deficient cells resulted in DNA breakage, cell cycle arrest, and apoptotic cell death. Moreover, Fanconi anemia complementation group G- (FANCG-) and FANCC-deficient pancreatic tumor lines were more sensitive to the ATM inhibitor KU-55933 than isogenic corrected lines. These data suggest that ATM and FA genes function in parallel and compensatory roles to maintain genomic integrity and cell viability. Pharmaceutical inhibition of ATM may have a role in the treatment of FA pathway-deficient human cancers.


Journal of the National Cancer Institute | 2012

A DNA Repair Pathway–Focused Score for Prediction of Outcomes in Ovarian Cancer Treated With Platinum-Based Chemotherapy

J. Kang; Alan D. D’Andrea; David Kozono

Background New tools are needed to predict outcomes of ovarian cancer patients treated with platinum-based chemotherapy. We hypothesized that a molecular score based on expression of genes that are involved in platinum-induced DNA damage repair could provide such prognostic information. Methods Gene expression data was extracted from The Cancer Genome Atlas (TCGA) database for 151 DNA repair genes from tumors of serous ovarian cystadenocarcinoma patients (n = 511). A molecular score was generated based on the expression of 23 genes involved in platinum-induced DNA damage repair pathways. Patients were divided into low (scores 0–10) and high (scores 11–20) score groups, and overall survival (OS) was analyzed by Kaplan–Meier method. Results were validated in two gene expression microarray datasets. Association of the score with OS was compared with known clinical factors (age, stage, grade, and extent of surgical debulking) using univariate and multivariable Cox proportional hazards models. Score performance was evaluated by receiver operating characteristic (ROC) curve analysis. Correlations between the score and likelihood of complete response, recurrence-free survival, and progression-free survival were assessed. Statistical tests were two-sided. Results Improved survival was associated with being in the high-scoring group (high vs low scores: 5-year OS, 40% vs 17%, P < .001), and results were reproduced in the validation datasets (P < .05). The score was the only pretreatment factor that showed a statistically significant association with OS (high vs low scores, hazard ratio of death = 0.40, 95% confidence interval = 0.32 to 0.66, P < .001). ROC curves indicated that the score outperformed the known clinical factors (score in a validation dataset vs clinical factors, area under the curve = 0.65 vs 0.52). The score positively correlated with complete response rate, recurrence-free survival, and progression-free survival (Pearson correlation coefficient [r2] = 0.60, 0.84, and 0.80, respectively; P < .001 for all). Conclusion The DNA repair pathway–focused score can be used to predict outcomes and response to platinum therapy in ovarian cancer patients.


Journal of Clinical Investigation | 2010

Cytokinesis failure occurs in Fanconi anemia pathway–deficient murine and human bone marrow hematopoietic cells

Patrizia Vinciguerra; Susana A. Godinho; Kalindi Parmar; David Pellman; Alan D. D’Andrea

Fanconi anemia (FA) is a genomic instability disorder characterized by bone marrow failure and cancer predisposition. FA is caused by mutations in any one of several genes that encode proteins cooperating in a repair pathway and is required for cellular resistance to DNA crosslinking agents. Recent studies suggest that the FA pathway may also play a role in mitosis, since FANCD2 and FANCI, the 2 key FA proteins, are localized to the extremities of ultrafine DNA bridges (UFBs), which link sister chromatids during cell division. However, whether FA proteins regulate cell division remains unclear. Here we have shown that FA pathway-deficient cells display an increased number of UFBs compared with FA pathway-proficient cells. The UFBs were coated by BLM (the RecQ helicase mutated in Bloom syndrome) in early mitosis. In contrast, the FA protein FANCM was recruited to the UFBs at a later stage. The increased number of bridges in FA pathway-deficient cells correlated with a higher rate of cytokinesis failure resulting in binucleated cells. Binucleated cells were also detectable in primary murine FA pathway-deficient hematopoietic stem cells (HSCs) and bone marrow stromal cells from human patients with FA. Based on these observations, we suggest that cytokinesis failure followed by apoptosis may contribute to bone marrow failure in patients with FA.


DNA Repair | 2008

The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly.

Kanchan D. Mirchandani; Ryan M. McCaffrey; Alan D. D’Andrea

Fanconi anemia (FA) is a chromosome instability syndrome characterized by congenital abnormalities, cellular hypersensitivity to DNA crosslinking agents, and heightened cancer risk. Eight of the thirteen identified FA genes encode subunits of a nuclear FA core complex that monoubiquitinates FANCD2 and FANCI to maintain genomic stability in response to replication stress. The FA pathway has been implicated in the regulation of error-prone DNA damage tolerance via an undefined molecular mechanism. Here, we show that the FA core complex is required for efficient spontaneous and UVC-induced point mutagenesis, independently of FANCD2 and FANCI. Consistent with the observed hypomutability of cells deficient in the FA core complex, we also demonstrate that these cells are impaired in the assembly of the error-prone translesion DNA synthesis polymerase Rev1 into nuclear foci. Consistent with a role downstream of the FA core complex and like known FA proteins, Rev1 is required to prevent DNA crosslinker-induced chromosomal aberrations in human cells. Interestingly, proliferating cell nuclear antigen (PCNA) monoubiquitination, known to contribute to Rev1 recruitment, does not require FA core complex function. Our results suggest a role for the FA core complex in regulating Rev1-dependent DNA damage tolerance independently of FANCD2, FANCI, and PCNA monoubiquitination.


Seminars in Cancer Biology | 2003

Regulation of the Fanconi anemia pathway by monoubiquitination.

Richard C. Gregory; Toshiyasu Taniguchi; Alan D. D’Andrea

Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome characterized by multiple congenital anomalies, bone marrow failure, and cellular sensitivity to mitomycin C (MMC). To date, six FA genes have been cloned, and the encoded proteins function in a novel pathway. The FA pathway is required for the normal cellular response to DNA damage. Following DNA damage, the pathway is activated, leading to monoubiquitination of the FA protein, FANCD2, and its targeting to subnuclear foci. Disruption of the FA pathway results in the absence of FANCD2 nuclear foci, leading to the cellular and clinical abnormalities of FA. Here, we review the recent studies describing the regulated monoubiquitination of the FANCD2 protein and discuss the interaction of the FA pathway with other DNA damage response pathways.


Journal of Clinical Investigation | 2016

Biallelic inactivation of REV7 is associated with Fanconi anemia

Dominique Bluteau; Julien Masliah-Planchon; Connor Clairmont; Alix Rousseau; Raphael Ceccaldi; Catherine Dubois d’Enghien; Olivier Bluteau; Wendy Cuccuini; Stéphanie Gachet; Régis Peffault de Latour; Thierry Leblanc; Gérard Socié; André Baruchel; Dominique Stoppa-Lyonnet; Alan D. D’Andrea; Jean Soulier

Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patients cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.


Journal of Molecular Medicine | 2007

The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents

Clark C. Chen; Toshiyasu Taniguchi; Alan D. D’Andrea

DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.

Collaboration


Dive into the Alan D. D’Andrea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge