Alan D. Gift
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan D. Gift.
Journal of Pharmaceutical Sciences | 2008
Alan D. Gift; Paul E. Luner; Laura Luedeman; Lynne S. Taylor
Crystalline anhydrous active pharmaceutical ingredients (APIs) can potentially transform to the hydrate form during manufacturing processes involving water. The ability to understand and manipulate these transformations is important to maintain control of the solid state form of the API. The influence of various polymeric excipients on the anhydrate to hydrate transformation of caffeine, carbamazepine, and sulfaguanidine was investigated in this study. The transformation of the APIs in aqueous slurries was monitored using in-line Raman measurements and the resultant kinetic profiles provided insight into the inhibitory ability of the polymers investigated. The results showed that cross-linked poly(acrylic acid) inhibited the caffeine transformation and hydroxypropyl methylcellulose inhibited the carbamazepine transformation. None of the polymers tested were able to inhibit the sulfaguanidine transformation although some polymers were able to reduce the rate of the transformation with poly(vinylpyrrolidone) showing the greatest effect. It was found that the inhibitory polymers were able to either reduce crystal growth rates and/or increase the induction time preceding the nucleation event.
Molecules | 2008
Stuart Farquharson; Alan D. Gift; Chetan Shende; Frank Inscore; Beth Ordway; Carl Farquharson; John Murren
The ability of surface-enhanced Raman spectroscopy (SERS) to measure 5-fluorouracil (5-FU) in saliva is presented. The approach is based on the capacity of Raman spectroscopy to provide a unique spectral signature for virtually every chemical, and the ability of SERS to provide μg/mL sensitivity. A simple sampling method, that employed 1-mm glass capillaries filled with silver-doped sol-gels, was developed to isolate 5-FU from potential interfering chemical components of saliva and simultaneously provide SERS-activity. The method involved treating a 1 mL saliva sample with 1 mL of acetic acid, drawing 10 μL of sample into a SERS-active capillary by syringe, and then measuring the SER spectrum. Quality SER spectra were obtained for samples containing as little as 2 μg of 5-FU in 1 mL saliva. The entire process, the acid pretreatment, extraction and spectral measurement, took less than 5 minutes. The SERS of 5-fluorouridine and 5-fluoro-2’-deoxyuridine, two major metabolites of 5-FU, were also measured and shown to have unique spectral peaks. These measurements suggest that disposable SERS-active capillaries could be used to measure 5-FU and metabolite concentrations in chemotherapy patient saliva, thereby providing metabolic data that would allow regulating dosage. Tentative vibrational mode assignments for 5-FU and its metabolites are also given.
Applied Spectroscopy | 2005
Stuart Farquharson; Alan D. Gift; Paul Maksymiuk; Frank Inscore
Detection of chemical agents as poisons in water supplies not only requires μg/L sensitivity, but also requires the ability to distinguish their hydrolysis products. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect chemical agents at these concentrations. Here we expand these studies and present the SERS spectra of the nerve agent VX (ethyl S-2-diisopropylamino ethyl methylphosphonothioate) and its hydrolysis products, ethyl S-2-diisopropylamino methylphosphonothioate, 2-(diisopropylamino) ethanethiol, ethyl methylphosphonic acid, and methylphosphonic acid. Vibrational mode assignments for the observed SERS peaks are also provided. Overall, each of these chemicals produces a series of peaks between 450 and 900 cm−1 that are sufficiently unique to allow identification. SERS measurements were performed in silver-doped sol-gel-filled capillaries that are being developed as part of an extractive point sensor.
Journal of Raman Spectroscopy | 1999
Alan D. Gift; Jiaying Ma; Kenneth S. Haber; Brian L. McClain; Dor Ben-Amotz
The design and performance of a near-infrared Raman imaging microscope (NIRIM) is described. This new instrument utilizes fiber-bundle image compression (FIC) to collect simultaneously a 3-D Raman spectral imaging data cube. Key NIRIM design features are discussed, including the FIC fiber-bundle, excitation laser, optical coupling to the microscope and fiber-bundle, holographic filtering, spectrograph imaging requirements, CCD parameters and chemical image processing. The theoretical collection efficiency and image quality of the NIRIM instrument are compared with those of tunable filter and line scanning Raman imaging methods. The performance of the NIRIM is demonstrated using a white light image of a bar-target and Raman chemical images of samples containing fructose–sucrose and Pb(NO3)2–K2SO4 microcrystalline mixtures. A Raman image collection time as fast as 1 s (total detector integration time) is demonstrated, for a 3-D data cube containing 322 image resolution elements and 900 Raman shift wavelengths. Copyright
Optical Technologies for Industrial, Environmental, and Biological Sensing | 2004
Chetan Shende; Alan D. Gift; Frank Inscore; Paul Maksymiuk; Stuart Farquharson
Modern agriculture depends on pesticides to curb infestations, increase crop yield and to produce the quantity and quality of food demanded by todays society. However, potential pesticide residue contamination of food is of critical concern to the food industry and the regulators responsible for health and safety. For example, many pesticides kill insects by attacking the central nervous system, and the use of these pesticides above the EPA set tolerance levels (from 0.1 to 50 ppm) could pose a threat to humans, in particular infants. Unfortunately, rapid, chemical analysis of pesticide residues is unavailable, and only a very small fraction of foods are inspected. The greatest concern is food imported from nations that simply ignore US regulations. In an effort to address this need, we have been developing a simple device to collect residues from food surfaces, perform a rapid chemical separation, and detect and identify pesticides by surface-enhanced Raman spectroscopy (SERS). Capillaries are coated with a metal-doped sol-gel that both separates chemicals and generates SER spectra when irradiated. SERS of pesticides at ppm concentrations, and a preliminary product to aid inspectors is presented.
Nondestructive Sensing for Food Safety, Quality, and Natural Resources | 2004
Chetan Shende; Frank Inscore; Alan D. Gift; Paul Maksymiuk; Stuart Farquharson
Pesticides are a key component in protecting crops and producing the quantity of food required by todays world population. However, since excessive concentrations pose a threat to human health, the USA sets strict tolerance levels to ensure public safety. Unfortunately, many other countries ignore these regulations and imported food exceeding these levels or contaminated with banned pesticides is a common occurrence. Furthermore, rapid chemical analysis of pesticide residues is unavailable, and only a very small fraction of foods are inspected. The greatest concern is fruit, for which an estimated 12 million tons were imported in 2003. In an effort to address this need, we have been developing a simple and rapid procedure to analyze for pesticides on fruit surfaces or in the juice of fruits. The procedure employs metal-doped sol-gel filled capillaries that both chemically extracts the pesticide and generates surface-enhanced Raman spectra when irradiated. The SERS-active capillaries, sensitivity, and preliminary fruit analyses are presented.
Optical Technologies for Industrial, Environmental, and Biological Sensing | 2004
Stuart Farquharson; Alan D. Gift; Paul Maksymiuk; Frank Inscore; Wayne W. Smith; Kevin Morrisey; Steven D. Christesen
In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.
Chemical and Biological Point Sensors for Homeland Defense II | 2004
Frank Inscore; Alan D. Gift; Paul Maksymiuk; Stuart Farquharson
The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.
Journal of Chemical Physics | 2002
Dor Ben-Amotz; Alan D. Gift; R. D. Levine
The principle of corresponding states is re-examined in the light of recent experimental and theoretical fluid equation of state data compilations. The results are used to critically test and extend the fundamental concept of corresponding states scaling for simple fluids (including rare gases, diatomics and methane). Classical corresponding states scaling based on critical point constants is found to produce weaker universal behavior than a new scaling procedure linked directly to the two intermolecular interaction potential parameters of a Lennard-Jones–6-12 fluid. The improved universal behavior revealed using this Lennard-Jones–corresponding-states scaling may either reflect inaccuracies in previous critical constant estimates, or perhaps point to more fundamental differences between the critical properties of different fluids.
Optical Technologies for Industrial, Environmental, and Biological Sensing | 2004
Stuart Farquharson; Alan D. Gift; Paul Maksymiuk; Frank Inscore; Wayne W. Smith
U.S. and Coalition forces fighting terrorism in Afghanistan and Iraq must consider a wide range of attack scenarios in addition to car bombings. Among these is the intentional poisoning of water supplies to obstruct military operations. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of methyl phosphonic acid and cyanide as a function of pH, an important factor affecting quantitation measurements, which to our knowledge has not been examined. In addition, dipicolinic acid, a chemical signature associated with anthrax-causing spores, is also presented.