Alan D. Rendall
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan D. Rendall.
Lecture Notes in Physics | 2000
Helmut Friedrich; Alan D. Rendall
Various aspects of the Cauchy problem for the Einstein equations are surveyed, with the emphasis on local solutions of the evolution equations. Particular attention is payed to giving a clear explanation of conceptual issues which arise in this context. The question of producing reduced systems of equations which are hyperbolic is examined in detail and some new results on that subject are presented. Relevant background from the theory of partial differential equations is also explained at some length.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 1990
Alan D. Rendall
A method is described by means of which the characteristic initial value problem can be reduced to the Cauchy problem and examples are given of how it can be used in practice. As an application it is shown that the characteristic initial value problem for the Einstein equations in vacuum or with perfect fluid source is well posed when data are given on two transversely intersecting null hypersurfaces. A new discussion is given of the freely specifiable data for this problem.
Communications in Mathematical Physics | 2001
Lars Andersson; Alan D. Rendall
Abstract: The most detailed existing proposal for the structure of spacetime singularities originates in the work of Belinskii, Khalatnikov and Lifshitz. We show rigorously the correctness of this proposal in the case of analytic solutions of the Einstein equations coupled to a scalar field or stiff fluid. More specifically, we prove the existence of a family of spacetimes depending on the same number of free functions as the general solution which have the asymptotics suggested by the Belinskii–Khalatnikov–Lifshitz proposal near their singularities. In these spacetimes a neighbourhood of the singularity can be covered by a Gaussian coordinate system in which the singularity is simultaneous and the evolution at different spatial points decouples.
Communications in Mathematical Physics | 1992
Gerhard Rein; Alan D. Rendall
We show that global asymptotically flat singularity-free solutions of the spherically symmetric Vlasov-Einstein system exist for all initial data which are sufficiently small in an appropriate sense. At the same time detailed information is obtained concerning the asymptotic behaviour of these solutions. A key element of the proof which is also of intrinsic interest is a local existence theorem with a continuation criterion which says that a solution cannot cease to exist as long as the maximum momentum in the support of the distribution function remains bounded. These results are contrasted with known theorems on spherically symmetric dust solutions.
Classical and Quantum Gravity | 1998
Satyanad Kichenassamy; Alan D. Rendall
We use the Fuchsian algorithm to construct singular solutions of Einsteins equations which belong to the class of Gowdy spacetimes. The solutions have the maximum number of arbitrary functions. Special cases correspond to polarized or other known solutions. The method provides precise asymptotics at the singularity, which is Kasner-like. All of these solutions are asymptotically velocity-dominated. The results account for the fact that solutions with velocity parameter uniformly greater than one are not observed numerically. They also provide a justification of formal expansions proposed by Grubisic and Moncrief.
Classical and Quantum Gravity | 1991
Alan D. Rendall; Bernd G. Schmidt
It is shown that for a given equation of state and a given value of the central pressure there exists a unique global solution of the Einstein equations representing a spherically symmetric static fluid body. For the proof a new theorem on singular ordinary differential equations is established which is of interest in its own right. For a given equation of state and central pressure, the fluid will either fill the entire space or be finite in extent with a vacuum exterior. Criteria are given which allow one to decide for certain equations of state which of these two cases occurs. This generalizes well known results in Newtonian theory and is proved by showing that the relativistic model inherits the property of having a finite radius from a Newtonian model. Parameter-dependent families of relativistic solutions are constructed which have a Newtonian limit in a rigorous sense. The relationship between relativistic and Newtonian equations of state is examined by looking at the example of a degenerate Fermi gas.
Living Reviews in Relativity | 1998
Alan D. Rendall
This article is a guide to the literature on existence theorems for the Einstein equations which also draws attention to open problems in the field. The local in time Cauchy problem, which is relatively well understood, is treated first. Next global results for solutions with symmetry are discussed. A selection of results from Newtonian theory and special relativity which offer useful comparisons is presented. This is followed by a survey of global results in the case of small data and results on constructing spacetimes with given singularity structure. The article ends with some miscellaneous topics connected with the main theme.
Living Reviews in Relativity | 2002
Alan D. Rendall
This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.
Classical and Quantum Gravity | 2000
Alan D. Rendall
Fuchsian equations provide a way of constructing large classes of spacetimes whose singularities can be described in detail. In some of the applications of this technique only the analytic case could be handled up to now. This paper develops a method of removing the undesirable hypothesis of analyticity. This is applied to the specific case of the Gowdy spacetimes in order to show that analogues of the results known in the analytic case hold in the smooth case. As far as possible the likely strengths and weaknesses of the method, as applied to more general problems, are displayed.
Annales Henri Poincaré | 2004
Alan D. Rendall
Abstract.A positive cosmological constant simplifies the asymptotics of forever expanding cosmological solutions of the Einstein equations. In this paper a general mathematical analysis on the level of formal power series is carried out for vacuum spacetimes of any dimension and perfect fluid spacetimes with linear equation of state in spacetime dimension four. For equations of state stiffer than radiation evidence for development of large gradients, analogous to spikes in Gowdy spacetimes, is found. It is shown that any vacuum solution satisfying minimal asymptotic conditions has a full asymptotic expansion given by the formal series. In four spacetime dimensions, and for spatially homogeneous spacetimes of any dimension, these minimal conditions can be derived for appropriate initial data. Using Fuchsian methods the existence of vacuum spacetimes with the given formal asymptotics depending on the maximal number of free functions is shown without symmetry assumptions.