Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan D. Roberts is active.

Publication


Featured researches published by Alan D. Roberts.


Journal of Immunology | 2001

Activated Antigen-Specific CD8 + T Cells Persist in the Lungs Following Recovery from Respiratory Virus Infections

Robert J. Hogan; Edward J. Usherwood; Weimin Zhong; Alan D. Roberts; Richard W. Dutton; Allen G. Harmsen; David L. Woodland

The poor correlation between cellular immunity to respiratory virus infections and the numbers of memory CD8+ T cells in the secondary lymphoid organs suggests that there may be additional reservoirs of T cell memory to this class of infection. Here we identify a substantial population of Ag-specific T cells in the lung that persist for several months after recovery from an influenza or Sendai virus infection. These cells are present in high numbers in both the airways and lung parenchyma and can be distinguished from memory cell populations in the spleen and peripheral lymph nodes in terms of the relative frequencies among CD8+ T cells, activation status, and kinetics of persistence. In addition, these cells are functional in terms of their ability to proliferate, express cytolytic activity, and secrete cytokines, although they do not express constitutive cytolytic activity. Adoptive transfer experiments demonstrated that the long-term establishment of activated T cells in the lung did not require infection in the lung by a pathogen carrying the inducing Ag. The kinetics of persistence of Ag-specific CD8+ T cells in the lung suggests that they play a key role in protective cellular immunity to respiratory virus infections.


Journal of Experimental Medicine | 2007

Activation phenotype, rather than central– or effector–memory phenotype, predicts the recall efficacy of memory CD8+ T cells

Hirokazu Hikono; Jacob E. Kohlmeier; Shiki Takamura; Susan Wittmer; Alan D. Roberts; David L. Woodland

The contributions of different subsets of memory CD8+ T cells to recall responses at mucosal sites of infection are poorly understood. Here, we analyzed the CD8+ T cell recall responses to respiratory virus infection in mice and demonstrate that activation markers, such as CD27 and CD43, define three distinct subpopulations of memory CD8+ T cells that differ in their capacities to mount recall responses. These subpopulations are distinct from effector– and central–memory subsets, coordinately express other markers associated with activation status, including CXCR3, CD127, and killer cell lectin-like receptor G1, and are superior to CD62L in predicting the capacity of memory T cells to mediate recall responses. Furthermore, the capacity of vaccines to elicit these memory T cell subpopulations predicted the efficacy of the recall response. These findings extend our understanding of how recall responses are generated and suggest that activation and migration markers define distinct, and unrelated, characteristics of memory T cells.


Journal of Experimental Medicine | 2005

Differential contributions of central and effector memory T cells to recall responses

Alan D. Roberts; Kenneth H. Ely; David L. Woodland

Although the absolute number of memory CD8+ T cells established in the spleen following antigen encounter remains stable for many years, the relative capacity of these cells to mediate recall responses is not known. Here we used a dual adoptive transfer approach to demonstrate a progressive increase in the quality of memory T cell pools in terms of their ability to proliferate and accumulate at effector sites in response to secondary pathogen challenge. This temporal increase in efficacy occurred in CD62Llo (effector memory) and CD62Lhi (central memory) subpopulations, but was most prominent in the CD62Lhi subpopulation. These data indicate that the contribution of effector memory and central memory T cells to the recall response changes substantially over time.


Journal of Experimental Medicine | 2003

Differential Antigen Presentation Regulates the Changing Patterns of CD8+ T Cell Immunodominance in Primary and Secondary Influenza Virus Infections

Sherry R. Crowe; Stephen J. Turner; Shannon C. Miller; Alan D. Roberts; Rachel A. Rappolo; Peter C. Doherty; Kenneth H. Ely; David L. Woodland

The specificity of CD8+ T cell responses can vary dramatically between primary and secondary infections. For example, NP366–374/Db- and PA224–233/Db-specific CD8+ T cells respond in approximately equal numbers to a primary influenza virus infection in C57BL/6 mice, whereas NP366–374/Db-specific CD8+ T cells dominate the secondary response. To investigate the mechanisms underlying this changing pattern of immunodominance, we analyzed the role of antigen presentation in regulating the specificity of the T cell response. The data show that both dendritic and nondendritic cells are able to present the NP366–374/Db epitope, whereas only dendritic cells effectively present the PA224–233/Db epitope after influenza virus infection, both in vitro and in vivo. This difference in epitope expression favored the activation and expansion of NP366–374/Db-specific CD8+ memory T cells during secondary infection. The data also show that the immune response to influenza virus infection may involve T cells specific for epitopes, such as PA224–233/Db, that are poorly expressed at the site of infection. In this regard, vaccination with the PA224–233 peptide actually had a detrimental effect on the clearance of a subsequent influenza virus infection. Thus, differential antigen presentation impacts both the specificity of the T cell response and the efficacy of peptide-based vaccination strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2008

ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes

William W. Reiley; Mark D. Calayag; Susan Wittmer; Jennifer L. Huntington; John E. Pearl; Jeffrey J. Fountain; Cynthia A. Martino; Alan D. Roberts; Andrea M. Cooper; Gary M. Winslow; David L. Woodland

CD4+ T cell responses to aerosol Mycobacterium tuberculosis (Mtb) infection are characterized by the relatively delayed appearance of effector T cells in the lungs. This delay in the adaptive response is likely critical in allowing the bacteria to establish persistent infection. Because of limitations associated with the detection of low frequencies of naïve T cells, it had not been possible to precisely determine when and where naïve antigen-specific T cells are first activated. We have addressed this problem by using early secreted antigenic target 6 (ESAT-6)-specific transgenic CD4 T cells to monitor early T cell activation in vivo. By using an adoptive transfer approach, we directly show that T cell priming to ESAT-6 occurs only after 10 days of infection, is initially restricted to the mediastinal lymph nodes, and does not involve other lymph nodes or the lungs. Primed CD4 T cells rapidly differentiated into proliferating effector cells and ultimately acquired the ability to produce IFN-γ and TNF-α ex vivo. Initiation of T cell priming was enhanced by two full days depending on the magnitude of the challenge inoculum, which suggests that antigen availability is a factor limiting the early CD4 T cell response. These data define a key period in the adaptive immune response to Mtb infection.


Immunity | 2008

The Chemokine Receptor CCR5 Plays a Key Role in the Early Memory CD8+ T Cell Response to Respiratory Virus Infections

Jacob E. Kohlmeier; Shannon C. Miller; Joanna Smith; Bao Lu; Craig Gerard; Alan D. Roberts; David L. Woodland

Innate recognition of invading pathogens in peripheral tissues results in the recruitment of circulating memory CD8(+) T cells to sites of localized inflammation during the early phase of a recall response. However, the mechanisms that control the rapid recruitment of these cells to peripheral sites are poorly understood, particularly in relation to influenza and parainfluenza infections of the respiratory tract. In this study, we demonstrate a crucial role for C-C chemokine receptor 5 (CCR5) in the accelerated recruitment of memory CD8(+) T cells to the lung airways during virus challenge. Most importantly, CCR5 deficiency resulted in decreased recruitment of memory T cells expressing key effector molecules and impaired control of virus replication during the initial stages of a secondary response. These data highlight the critical importance of early memory T cell recruitment for the efficacy of cellular immunity in the lung.


Immunity | 2010

Type I Interferons Regulate Cytolytic Activity of Memory CD8+ T Cells in the Lung Airways during Respiratory Virus Challenge

Jacob E. Kohlmeier; Alan D. Roberts; Shannon C. Miller; David L. Woodland

Memory CD8(+) T cells in the lung airways provide protection from secondary respiratory virus challenge by limiting early viral replication. Here, we demonstrate that although airway-resident memory CD8(+) T cells were poorly cytolytic, memory CD8(+) T cells recruited to the airways early during a recall response showed markedly enhanced cytolytic ability. This enhanced lytic activity did not require cognate antigen stimulation, but rather was dependent on STAT1 transcription factor signaling through the interferon-alpha receptor (Ifnar1), resulting in the antigen-independent expression of granzyme B protein in both murine and human virus-specific T cells. Signaling through Ifnar1 was required for the enhanced lytic activity and control of early viral replication by memory CD8(+) T cells in the lung airways. These findings demonstrate that innate inflammatory signals act directly on memory T cells, enabling them to rapidly destroy infected host cells once they enter infected tissues.


Journal of Immunology | 2006

Memory T Cell Populations in the Lung Airways Are Maintained by Continual Recruitment

Kenneth H. Ely; Alan D. Roberts; David L. Woodland

Effector memory T cell populations in the periphery play a key role in cellular immune responses to secondary infections. However, it is unclear how these populations are maintained under steady-state conditions in nonlymphoid peripheral sites, such as the lung airways. In this study, we show that LFA-1 expression is selectively down-regulated following entry of memory T cells into the lung airways. Using Sendai virus as a mouse model of respiratory virus infection, we use LFA-1 expression levels to demonstrate that effector memory T cell populations in the lung airways are maintained by continual recruitment of new cells from the circulation. The rate of memory cell recruitment is surprisingly rapid, resulting in replacement of 90% of the population every 10 days, and is maintained for well over 1 year following viral clearance. These data indicate that peripheral T cell memory is dynamic and depends on a systemic source of T cells.


Journal of Immunology | 2007

Priming with Cold-Adapted Influenza A Does Not Prevent Infection but Elicits Long-Lived Protection against Supralethal Challenge with Heterosubtypic Virus

Timothy J. Powell; Tara M. Strutt; Joyce B. Reome; Joseph A. Hollenbaugh; Alan D. Roberts; David L. Woodland; Susan L. Swain; Richard W. Dutton

We show in this study several novel features of T cell-based heterosubtypic immunity against the influenza A virus in mice. First, T cell-mediated heterosubtypic protection against lethal challenge can be generated by a very low priming dose. Second, it becomes effective within 5–6 days. Third, it provides protection against a very high dose challenge for >70 days. Also novel is the finding that strong, long-lasting, heterosubtypic protection can be elicited by priming with attenuated cold-adapted strains. We demonstrate that priming does not prevent infection of the lungs following challenge, but leads to earlier clearance of the virus and 100% survival after otherwise lethal challenge. Protection is dependent on CD8 T cells, and we show that CD4 and CD8 T cells reactive to conserved epitopes of the core proteins of the challenge virus are present after priming. Our results suggest that intranasal vaccination with cold-adapted, attenuated live virus has the potential to provide effective emergency protection against emerging influenza strains for several months.


Journal of Immunology | 2004

Cutting Edge: Effector Memory CD8+ T Cells Play a Prominent Role in Recall Responses to Secondary Viral Infection in the Lung

Alan D. Roberts; David L. Woodland

The relative contributions of CD62Lhigh (central) memory and CD62Llow (effector) memory T cell populations to recall responses are poorly understood, especially in the respiratory tract. In this study, we took advantage of a dual-adoptive transfer system in the mouse to simultaneously follow the recall response of effector and central memory subpopulations to intranasal parainfluenza virus infection. Using MHC class I and class II multimers, we tracked the responses of Ag-specific CD8+ and CD4+ memory T cells in the same animals. The data show that effector memory T cells mounted recall responses that were equal to, or greater than, those mounted by central memory T cells. Moreover, effector memory T cells were more efficient at subsequently establishing a second generation of memory T cells. These data contrast with other studies indicating that central memory CD8+ T cells are the prominent contributors to systemic virus infections.

Collaboration


Dive into the Alan D. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary M. Winslow

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Ian M. Orme

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge