Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Deese is active.

Publication


Featured researches published by Alan Deese.


Drug Metabolism and Disposition | 2011

Significant Species Difference in Amide Hydrolysis of GDC-0834, a Novel Potent and Selective Bruton's Tyrosine Kinase Inhibitor

Luna Liu; Jason S. Halladay; Y. Shin; Susan Wong; Melis Coraggio; H. La; M. Baumgardner; H. Le; S. Gopaul; Jason Boggs; P. Kuebler; J. C. Davis; X. C. Liao; Joseph W. Lubach; Alan Deese; C. G. Sowell; K. S. Currie; W. B. Young; S. C. Khojasteh; Cornelis E. C. A. Hop; Harvey Wong

(R)-N-(3-(6-(4-(1,4-Dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide (GDC-0834) is a potent and selective inhibitor of Brutons tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. The formation of M1 appeared to be NADPH-independent in human liver microsomes. M1 was found in only minor to moderate quantities in plasma from preclinical species dosed with GDC-0834. Human clearance predictions using various methodologies resulted in estimates ranging from low to high. In addition, GDC-0834 exhibited low clearance in PXB chimeric mice with humanized liver. Uncertainty in human pharmacokinetic prediction and high interest in a BTK inhibitor for clinical evaluation prompted an investigational new drug strategy, in which GDC-0834 was rapidly advanced to a single-dose human clinical trial. GDC-0834 plasma concentrations in humans were below the limit of quantitation (<1 ng/ml) in most samples from the cohorts dosed orally at 35 and 105 mg. In contrast, substantial plasma concentrations of M1 were observed. In human plasma and urine, only M1 and its sequential metabolites were identified. The formation kinetics of M1 was evaluated in rat, dog, monkey, and human liver microsomes in the absence of NADPH. The maximum rate of M1 formation (Vmax) was substantially higher in human compared with that in other species. In contrast, the Michaelis-Menten constant (Km) was comparable among species. Intrinsic clearance (Vmax/Km) of GDC-0834 from M1 formation in human was 23- to 169-fold higher than observed in rat, dog, and monkey.


Drug Metabolism and Disposition | 2005

HUMAN IN VITRO GLUTATHIONYL AND PROTEIN ADDUCTS OF CARBAMAZEPINE-10,11-EPOXIDE, A STABLE AND PHARMACOLOGICALLY ACTIVE METABOLITE OF CARBAMAZEPINE

Hai-Zhi Bu; Ping Kang; Alan Deese; Ping Zhao; William F. Pool

The clinical use of carbamazepine (CBZ), an anticonvulsant, is associated with a variety of idiosyncratic adverse reactions that are likely related to the formation of chemically reactive metabolites. CBZ-10,11-epoxide (CBZE), a pharmacologically active metabolite of CBZ, is so stable in vitro and in vivo that the potential for the epoxide to covalently interact with macromolecules has not been fully explored. In this study, two glutathione (GSH) adducts were observed when CBZE was incubated with GSH in the absence of biological matrices and cofactors (e.g., liver microsomes and NADPH). The chemical reactivity of CBZE was further confirmed by the in vitro finding that [14C]CBZE formed covalent protein adducts in human plasma as well as in human liver microsomes (HLMs) without NADPH. The two GSH adducts formed in the chemical reaction of CBZE were identical to the two major GSH adducts observed in the HLM incubation of CBZ, indicating that the 10,11-epoxidation represents a bioactivation pathway of CBZ. The two GSH adducts were isolated and identified as two diastereomers of 10-hydroxy-11-glutathionyl-CBZ by NMR. In addition, the covalent binding of [14C]CBZE was significantly increased in the HLM incubation upon addition of NADPH, indicating that CBZE can be further bioactivated by HLMs. To our knowledge, this is the first time the metabolite CBZE has been confirmed for its ability to form covalent protein adducts and the identity of the two CBZE-glutathionyl adducts has been confirmed by NMR. These represent important findings in the bioactivation mechanism of CBZ.


Drug Metabolism and Disposition | 2007

Identification of a Novel Glutathione Conjugate of Flutamide in Incubations with Human Liver Microsomes

Ping Kang; Deepak Dalvie; Evan Smith; Sue Zhou; Alan Deese

Flutamide, a nonsteroidal antiandrogen drug widely used in the treatment of prostate cancer, has been associated with rare incidences of hepatotoxicity in patients. It is believed that bioactivation of flutamide and subsequent covalent binding to cellular proteins is responsible for its toxicity. Current in vitro studies were undertaken to probe the cytochrome P450 (P450)-mediated bioactivation of flutamide and identify the possible reactive species using reduced glutathione (GSH) as a trapping agent. NADPH- and GSH-supplemented human liver microsomal incubations of flutamide gave rise to a novel GSH conjugate where GSH moiety was conjugated to the flutamide molecule via the amide nitrogen, resulting in a sulfenamide. The structure of the conjugate was characterized by liquid chromatography-tandem mass spectrometry and NMR experiments. The conjugate formation was primarily catalyzed by heterologously expressed CYP2C19, CYP1A2, and, to a lesser extent, CYP3A4 and CYP3A5. The mechanism for the formation of this conjugate is unknown; however, a tentative bioactivation mechanism involving a P450-catalyzed abstraction of hydrogen atom from the amide nitrogen of flutamide and the subsequent trapping of the nitrogen-centered radical by GSH or oxidized glutathione (GSSG) was proposed. Interestingly, the same adduct was formed when flutamide was incubated with human liver microsomes in the presence of GSSG and NADPH. This finding suggests that P450-mediated oxidation of flutamide via a nitrogen-centered free radical could be one of the several bioactivation pathways of flutamide. Even though the relationship of the GSH conjugate to flutamide-induced toxicity is unknown, the results have revealed the formation of a novel, hitherto unknown, GSH adduct of flutamide.


Drug Metabolism and Disposition | 2008

Bioactivation of flutamide metabolites by human liver microsomes.

Ping Kang; Deepak Dalvie; Evan Smith; Sue Zhou; Alan Deese; James A. Nieman

Flutamide, a widely used nonsteroidal antiandrogen drug for the treatment of prostate cancer, has been associated with rare incidences of hepatotoxicity in patients. It is believed that bioactivation of flutamide and subsequent covalent binding to cellular proteins is responsible for its toxicity. A novel N-S glutathione adduct has been identified in a previous bioactivation study of flutamide (Kang et al., 2007). Due to the extensive first pass metabolism, flutamide metabolites such as 2-hydroxyflutamide and 4-nitro-3-(trifluoromethyl)phenylamine (Flu-1) have achieved plasma concentrations higher than the parent in prostate cancer patients. In vitro studies in human liver microsomes were conducted to probe the cytochrome P450 (P450)-mediated bioactivation of flutamide metabolites and identify the possible reactive species using reduced glutathione (GSH) as a trapping agent. Several GSH adducts (G1, Flu-1-G1, Flu-1-G2, Flu-6-Gs) derived from the metabolites of flutamide were identified and characterized. A comprehensive bioactivation mechanism was proposed to account for the formation of the observed GSH adducts. Of interest were the formation of a reactive intermediate by the desaturation of the isopropyl group of M5 and the unusual bioactivation of Flu-1. Studies using recombinant P450s suggested that the major P450 isozymes involved in the bioactivation of flutamide and its metabolites were CYP1A2, CYP3A4, and CYP2C19. These findings suggested that, in addition to the direct bioactivation of flutamide, the metabolites of flutamide could also be bioactivated and contribute to flutamide-induced hepatotoxicity.


Organic Letters | 2013

Chemoselective sp2-sp3 cross-couplings: iron-catalyzed alkyl transfer to dihaloaromatics.

Sushant Malhotra; Pamela S. Seng; Stefan G. Koenig; Alan Deese; Kevin A. Ford

The chemoselective functionalization of a range of dihaloaromatics with methyl, cyclopropyl, and higher alkyl Grignard reagents via iron-catalyzed cross-coupling is described. The site selectivity of C-X (X = halogen) activation is determined by factors such as the position of the halogen on the ring, the solvent, and the nucleophile. A one-pot protocol for the chemoselective synthesis of mixed dialkyl heterocycles is achieved solely employing iron catalysis.


Drug Metabolism and Disposition | 2006

IN VITRO METABOLIC ACTIVATION OF THIABENDAZOLE VIA 5-HYDROXYTHIABENDAZOLE: IDENTIFICATION OF A GLUTATHIONE CONJUGATE OF 5-HYDROXYTHIABENDAZOLE

Deepak Dalvie; Evan Smith; Alan Deese; Stephen Bowlin

Thiabendazole (TBZ) is a broad-spectrum antihelmintic used for treatment of parasitic infections in animals and humans and as an agricultural fungicide for postharvest treatment of fruits and vegetables. It is teratogenic and nephrotoxic in mice, and cases of hepatotoxicity have been observed in humans. Recent reports have demonstrated a correlation between 5-hydroxythiabendazole (5-OHTBZ) formation, a major metabolite of TBZ, and covalent binding of [14C]TBZ to hepatocytes, suggesting another pathway of activation of TBZ. Current in vitro studies were undertaken to probe the bioactivation of TBZ via 5-OHTBZ by cytochrome P450 (P450) and peroxidases and identify the reactive species by trapping with reduced glutathione (GSH). Microsomal incubation of TBZ or 5-OHTBZ supplemented with NADPH and GSH afforded a GSH adduct of 5-OHTBZ and was consistent with a bioactivation pathway that involved a P450-catalyzed two-electron oxidation of 5-OHTBZ to a quinone imine. The same adduct was detected in GSH-fortified incubations of 5-OHTBZ with peroxidases. The identity of the GSH conjugate suggested that the same reactive intermediate was formed by both these enzyme systems. Characterization of the conjugate by mass spectrometry and NMR revealed the addition of GSH at the 4-position of 5-OHTBZ. In addition, the formation of a dimer of 5-OHTBZ was discernible in peroxidase-mediated incubations. These results were consistent with a one-electron oxidation of 5-OHTBZ to a radical species that could undergo disproportionation or an additional one-electron oxidation to form a quinone imine. Overall, these studies suggest that 5-OHTBZ can also play a role in TBZ-induced toxicity via its bioactivation by P450 and peroxidases.


Chemical Research in Toxicology | 2010

Formation of a Quinoneimine Intermediate of 4-Fluoro-N-methylaniline by FMO1: Carbon Oxidation Plus Defluorination

James P. Driscoll; Ignacio Aliagas; Jennifer J. Harris; Jason S. Halladay; Sheerin Khatib-Shahidi; Alan Deese; Nathaniel L. Segraves; S. Cyrus Khojasteh-Bakht

Here, we report on the mechanism by which flavin-containing monooxygenase 1 (FMO1) mediates the formation of a reactive intermediate of 4-fluoro-N-methylaniline. FMO1 catalyzed a carbon oxidation reaction coupled with defluorination that led to the formation of 4-N-methylaminophenol, which was a reaction first reported by Boersma et al. (Boersma et al. (1993) Drug Metab. Dispos. 21 , 218 - 230). We propose that a labile 1-fluoro-4-(methylimino)cyclohexa-2,5-dienol intermediate was formed leading to an electrophilic quinoneimine intermediate. The identification of N-acetylcysteine adducts by LC-MS/MS and NMR further supports the formation of a quinoneimine intermediate. Incubations containing stable labeled oxygen (H(2)(18)O or (18)O(2)) and ab initio calculations were performed to support the proposed reaction mechanism.


Drug Metabolism and Disposition | 2011

Absorption, Distribution, Metabolism, and Excretion of [14C]GDC-0449 (Vismodegib), an Orally Active Hedgehog Pathway Inhibitor, in Rats and Dogs: A Unique Metabolic Pathway via Pyridine Ring Opening

Qin Yue; Yung-Hsiang Chen; Teresa Mulder; Alan Deese; Ryan Takahashi; Patrick J. Rudewicz; Mark Reynolds; Eric Solon; Cornelis E. C. A. Hop; Harvey Wong; S. Cyrus Khojasteh

2-Chloro-N-(4-chloro-3-(pyridin-2-yl)-phenyl)-4-(methylsulfonyl)-benzamide (GDC-0449, vismodegib) is a potent and selective first-in-class small-molecule inhibitor of the Hedgehog signaling pathway and is currently in clinical development. In this study, we investigated the metabolic fate and disposition of GDC-0449 in rats and dogs after a single oral administration of [14C]GDC-0449. An average of 92.4 and 80.4% of the total administered radioactivity was recovered from urine and feces in rats and dogs, respectively. In both species, feces were the major route of excretion, representing 90.0 and 77.4% of the total dose in rats and dogs, respectively. At least 42.1 and 30.8% of the dose was absorbed in rats and dogs, respectively, based on the total excretion of radioactivity in bile and urine. GDC-0449 underwent extensive metabolism in rats and dogs with the major metabolic pathways being oxidation of the 4-chloro-3-(pyridin-2-yl)-phenyl moiety followed by phase II glucuronidation or sulfation. Three other metabolites resulting from an uncommon pyridine ring opening were found, mainly in feces, representing 1.7 to 17.7% of the dose in total in rats and dogs. In plasma, the total radioactivity was absorbed quickly in both rats and dogs, and unchanged GDC-0449 was the predominant circulating radioactive species in both species (>95% of total circulating radioactivity). Quantitative whole-body autoradiography in rats showed that the radioactivity was well distributed in the body, except for the central nervous system, and the majority of radioactivity was eliminated from most tissues by 144 h.


Chemical Research in Toxicology | 2011

Novel mechanism for dehalogenation and glutathione conjugation of dihalogenated anilines in human liver microsomes: evidence for ipso glutathione addition.

Chenghong Zhang; Jane R. Kenny; Hoa Le; Alan Deese; Kevin A. Ford; Luke K. Lightning; Peter W. Fan; James P. Driscoll; Jason S. Halladay; Cornelis E. C. A. Hop; S. Cyrus Khojasteh

The objective of the present study was to investigate the influence of halogen position on the formation of reactive metabolites from dihalogenated anilines. Herein we report on a proposed mechanism for dehalogenation and glutathione (GSH) conjugation of a series of ortho-, meta-, and para-dihalogenated anilines observed in human liver microsomes. Of particular interest were conjugates formed in which one of the halogens on the aniline was replaced by GSH. We present evidence that a (4-iminocyclohexa-2,5-dienylidene)halogenium reactive intermediate (QX) was formed after oxidation, followed by ipso addition of GSH at the imine moiety. The ipso GSH thiol attacks at the ortho-carbon and eventually leads to a loss of a halogen and GSH replacement. The initial step of GSH addition at the ipso position is also supported by density functional theory, which suggests that the ipso carbon of the chloro, bromo, and iodo (but not fluoro) containing 2-fluoro-4-haloanilines is the most positive carbon and that these molecules have the favorable highest occupied molecular orbital of the aniline and the lowest unoccupied orbital from GSH. The para-substituted halogen (chloro, bromo, or iodo but not fluoro) played a pivotal role in the formation of the QX, which required a delocalization of the positive charge on the para-halogen after oxidation. This mechanism was supported by structure-metabolism relationship analysis of a series of dihalogenated and monohalogenated aniline analogues.


Journal of Chromatography A | 2012

Strategies for the analysis of highly reactive pinacolboronate esters.

Qiqing Zhong; Kenley K. Ngim; Megan Sun; Jane Li; Alan Deese; Nik P. Chetwyn

Pinacolboronate esters (or boronic acid, pinacol esters) are widely used in the Suzuki coupling reaction to connect organic building blocks for the total synthesis of complex molecules. The 2-aminopyrimidine-5-pinacolboronate ester was used as a starting material in the synthesis of a development compound, necessitating a chromatographic purity method to assess its quality. This aryl pinacolboronate ester posed unique analytical challenges due to its facile hydrolysis to the corresponding boronic acid, which is nonvolatile and poorly soluble in organic solvents. This made GC and normal-phase HPLC analysis unsuitable. In reversed-phase mode, typical sample preparation and analysis conditions promoted rapid sample degradation to the boronic acid. To overcome these challenges, unconventional approaches were necessary in order to stabilize 2-aminopyrimidine-5-pinacolboronate ester, adequately solubilize its boronic acid, and produce acceptable separation and retention. The final method employed non-aqueous and aprotic diluent, and a reversed-phase separation using highly basic mobile phases (pH 12.4) with an ion pairing reagent. These strategies were successfully applied to several other reactive pinacolboronate esters for purity analysis, demonstrating broad applicability to this unique class of compounds.

Collaboration


Dive into the Alan Deese's collaboration.

Researchain Logo
Decentralizing Knowledge