Alan F. Cowman
Walter and Eliza Hall Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan F. Cowman.
Nature | 2000
Michael B. Reed; Kevin J. Saliba; Sonia R. Caruana; Kiaran Kirk; Alan F. Cowman
Throughout the latter half of this century, the development and spread of resistance to most front-line antimalarial compounds used in the prevention and treatment of the most severe form of human malaria has given cause for grave clinical concern. Polymorphisms in pfmdr1, the gene encoding the P-glycoprotein homologue 1 (Pgh1) protein of Plasmodium falciparum, have been linked to chloroquine resistance; Pgh1 has also been implicated in resistance to mefloquine and halofantrine. However, conclusive evidence of a direct causal association between pfmdr1 and resistance to these antimalarials has remained elusive, and a single genetic cross has suggested that Pgh1 is not involved in resistance to chloroquine and mefloquine. Here we provide direct proof that mutations in Pgh1 can confer resistance to mefloquine, quinine and halofantrine. The same mutations influence parasite resistance towards chloroquine in a strain-specific manner and the level of sensitivity to the structurally unrelated compound, artemisinin. This has important implications for the development and efficacy of future antimalarial agents.
Cell | 2006
Alan F. Cowman; Brendan S. Crabb
The malaria parasite is the most important member of the Apicomplexa, a large and highly successful phylum of intracellular parasites. Invasion of host cells allows apicomplexan parasites access to a rich source of nutrients in a niche that is largely protected from host defenses. All Apicomplexa adopt a common mode of host-cell entry, but individual species incorporate unique features and utilize a specific set of ligand-receptor interactions. These adhesins ultimately connect to a parasite actin-based motor, which provides the power for invasion. While some Apicomplexa can invade many different host cells, the disease-associated blood-stage form of the malaria parasite is restricted to erythrocytes.
Cell | 1989
Simon J. Foote; Jennifer K. Thompson; Alan F. Cowman; David J. Kemp
Resistance of Plasmodium falciparum to chloroquine shares features with the multidrug resistance (MDR) phenotype of mammalian tumor cells. We report here the sequence of pfmdr, the P. falciparum homolog of mdr. We show that pfmdr is amplified in some chloroquine-resistant parasites but not in any of the sensitive isolates examined and that pfmdr transcript levels are increased. The gene is located on chromosome 5, and in one chloroquine-resistant line with an amplified pfmdr gene, chromosome 5 is greatly enlarged. The chromosome heterogeneity is due to varying copy numbers of different-sized pfmdr-containing amplicons. The existence of an mdr gene in P. falciparum and its amplification in some chloroquine-resistant lines greatly adds to the circumstantial evidence that pfmdr mediates chloroquine resistance in these lines.
The EMBO Journal | 2000
Ross F. Waller; Michael B. Reed; Alan F. Cowman; Geoffrey I. McFadden
The plastid of Plasmodium falciparum (or ‘apicoplast’) is the evolutionary homolog of the plant chloroplast and represents a vestige of a photosynthetic past. Apicoplast indispensability indicates that it still provides essential functions to parasites. Similar to plant chloroplasts, the apicoplast is dependent on many nucleus‐encoded genes to provide these functions. The apicoplast is surrounded by four membranes, two more than plant chloroplasts. Thus, protein targeting to the apicoplast must overcome additional membrane barriers. In P.falciparum we have analyzed apicoplast targeting using green fluorescent protein (GFP). We demonstrate that protein targeting is at least a two‐step process mediated by bipartite N‐terminal pre‐sequences that consist of a signal peptide for entry into the secretory pathway and a plant‐like transit peptide for subsequent import into the apicoplast. The P.falciparum transit peptide is exceptional compared with other known plastid transit peptides in not requiring serine or threonine residues. The pre‐sequence components are removed stepwise during apicoplast targeting. Targeting GFP to the apicoplast has also provided the first opportunity to examine apicoplast morphology in live P.falciparum.
Cell | 1997
Brendan S. Crabb; Brian M. Cooke; John C. Reeder; Ross F. Waller; Sonia R. Caruana; Kathleen M. Davern; Mark E. Wickham; Graham V. Brown; Ross L. Coppel; Alan F. Cowman
Knobs at the surface of erythrocytes infected with Plasmodium falciparum have been proposed to be important in adherence of these cells to the vascular endothelium. This structure contains the knob-associated histidine-rich protein (KAHRP) and the adhesion receptor P. falciparum erythrocyte membrane protein 1. We have disrupted the gene encoding KAHRP and show that it is essential for knob formation. Knob-transfectants adhere to CD36 in static assays; when tested under flow conditions that mimic those of postcapillary venules, however, the binding to CD36 was dramatically reduced. These data suggest that knobs on P. falciparum-infected erythrocytes exert an important influence on adherence of parasitized-erythrocytes to microvascular endothelium, an important process in the pathogenesis of P. falciparum infections.
Cell | 2005
Manoj T. Duraisingh; Till S. Voss; Allison J. Marty; Michael F. Duffy; Robert T. Good; Jennifer K. Thompson; Lucio H. Freitas-Junior; Artur Scherf; Brendan S. Crabb; Alan F. Cowman
The malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene disruption of PfSIR2 results in activation of this gene family. We also demonstrate that perinuclear gene activation involves chromatin alterations and repositioning into a location that may be permissive for transcription. Together, this implies that locus repositioning and heterochromatic silencing play important roles in the epigenetic regulation of virulence genes in P. falciparum.
Cell | 1985
Charles S. Zuker; Alan F. Cowman; Gerald M. Rubin
Using a novel method for detecting cross-homologous nucleic acid sequences we have isolated the gene coding for the major rhodopsin of Drosophila melanogaster and mapped it to chromosomal region 92B8-11. Comparison of cDNA and genomic DNA sequences indicates that the gene is divided into five exons. The amino acid sequence deduced from the nucleotide sequence is 373 residues long, and the polypeptide chain contains seven hydrophobic segments that appear to correspond to the seven transmembrane segments characteristic of other rhodopsins. Three regions of Drosophila rhodopsin are highly conserved with the corresponding domains of bovine rhodopsin, suggesting an important role for these polypeptide regions.
Trends in Parasitology | 2001
Carol Hopkins Sibley; John E. Hyde; Paul F. G. Sims; Christopher V. Plowe; James G Kublin; E.K. Mberu; Alan F. Cowman; Peter Winstanley; William M. Watkins; Alexis Nzila
Chemotherapy remains the only practicable tool to control falciparum malaria in sub-Saharan Africa, where >90% of the worlds burden of malaria mortality and morbidity occurs. Resistance is rapidly eroding the efficacy of chloroquine, and the combination pyrimethamine-sulfadoxine is the most commonly chosen alternative. Resistant populations of Plasmodium falciparum were selected extremely rapidly in Southeast Asia and South America. If this happens in sub-Saharan Africa, it will be a public health disaster because no inexpensive alternative is currently available. This article reviews the molecular mechanisms of this resistance and discusses how to extend the therapeutic life of antifolate drugs.
Cell | 2008
Alexander G. Maier; Melanie Rug; Matthew T. O'Neill; Monica Brown; Srabasti J. Chakravorty; Tadge Szestak; Joanne M. Chesson; Yang Wu; Katie R. Hughes; Ross L. Coppel; Chris Newbold; James G. Beeson; Alister Craig; Brendan S. Crabb; Alan F. Cowman
Summary A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.
Nature Reviews Microbiology | 2009
Alexander G. Maier; Brian M. Cooke; Alan F. Cowman; Leann Tilley
Exported proteins of the malaria parasite Plasmodium falciparum interact with proteins of the erythrocyte membrane and induce substantial changes in the morphology, physiology and function of the host cell. These changes underlie the pathology that is responsible for the deaths of 1–2 million children every year due to malaria infections. The advent of molecular transfection technology, including the ability to generate deletion mutants and to introduce fluorescent reporter proteins that track the locations and dynamics of parasite proteins, has increased our understanding of the processes and machinery for export of proteins in P. falciparum-infected erythrocytes and has provided us with insights into the functions of the parasite protein exportome. We review these developments, focusing on parasite proteins that interact with the erythrocyte membrane skeleton or that promote delivery of the major virulence protein, PfEMP1, to the erythrocyte membrane.