Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan G. Fincham is active.

Publication


Featured researches published by Alan G. Fincham.


Biochemical and Biophysical Research Communications | 1985

DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein

Malcolm L. Snead; Eduardo C. Lau; Margarita Zeichner-David; Alan G. Fincham; Savio L. C. Woo; Harold C. Slavkin

Enamel is the unique and highly mineralized extracellular matrix that covers vertebrate teeth. Amelogenin proteins represent the predominate subfamily of gene products found in developing mammalian enamel, and are implicated in the regulation of the formation of the largest hydroxyapatite crystals in the vertebrate body. Previous attempts to isolate, purify and characterize amelogenins extracted from developing matrix have proven difficult. We now have determined the DNA sequence for a cDNA for the 26-kDa class of murine amelogenin and deduced its corresponding amino acid sequence. The murine amino acid sequence is homologous to bovine or porcine amelogenins extracted from developing enamel matrices. However, an additional 10-residues were found at the carboxy terminus of the murine amelogenin. This is the most complete sequence database for amelogenin peptides and the only DNA sequence for enamel specific genes.


Calcified Tissue International | 1994

Isolation and characterization of a mouse amelogenin expressed in Escherichia coli

James P. Simmer; Eduardo C. Lau; C. C. Hu; T. Aoba; M. Lacey; D. Nelson; Margarita Zeichner-David; Malcolm L. Snead; Harold C. Slavkin; Alan G. Fincham

A mouse cDNA encoding a 180 amino acid amelogenin was subcloned into the pET expression plasmid (Novagen, Madison, WI) for production in Escherichia coli. A simple growth and purification protocol yields 20–50 mg of 95–99% pure recombinant amelogenin from a 4.5-liter culture. This is the first heterologous expression of an enamel protein. The expressed protein was characterized by partial Edman sequencing, amino acid composition analysis, SDS-PAGE, Western blotting, laser desorption mass spectrometry, and hydroxyapatite binding. The recombinant amelogenin is 179 amino acids in length, has a molecular weight of 20,162 daltons, and hydroxyapatite binding properties similar to the porcine 173 residue amelogenin. Solubility analyses showed that the bacterially expressed protein is only sparingly soluble in the pH range of 6.4–8.0 or in solutions 20% saturated with ammonium sulfate. The purified protein was used to generate rabbit polyclonal anti-amelogenin antibodies which show specific reaction to amelogenins in both Western blot analyses of enamel extracts and in immunostaining of developing mouse molars.


Journal of Dental Research | 1999

Characterization of Recombinant Pig Enamelysin Activity and Cleavage of Recombinant Pig and Mouse Amelogenins

O.H. Ryu; Alan G. Fincham; C.-C. Hu; C.H. Zhang; Q. Qian; John D. Bartlett; James P. Simmer

Enamelysin (MMP-20) is a tooth-specific matrix metalloproteinase that is initially expressed by ameloblasts and odontoblasts immediately prior to the onset of dentin mineralization, and continues to be expressed throughout the secretory stage of amelogenesis. During the secretory stage, enamel proteins are secreted and rapidly cleaved into a large number of relatively stable cleavage products. Multiple proteinases are present in the developing enamel matrix, and the precise role of enamelysin in the processing of enamel proteins is unknown. We have expressed, activated, and purified the catalytic domain of recombinant pig enamelysin, and expressed a recombinant form of the major secreted pig amelogenin rP172. These proteins were incubated together, and the digestion products were analyzed by SDS-PAGE and mass spectrometric analyses. We assigned amelogenin cleavage products by selecting among the possible polypeptides having a mass within 2 Daltons of the measured values. The polypeptides identified included the intact protein (amino acids 2-173), as well as 2-148, 2-136, 2-107, 2-105, 2-63, 2-45, 46-148, 46-147, 46-107, 46-105, 64-148, 64-147, and 64-136. These fragments of rP172 include virtually all of the major amelogenin cleavage products observed in vivo. We propose that enamelysin is the predominant proteinase that processes enamel proteins during the secretory phase of amelogenesis.


Journal of Histochemistry and Cytochemistry | 1998

Comparative Immunochemical Analyses of the Developmental Expression and Distribution of Ameloblastin and Amelogenin in Rat Incisors

Antonio Nanci; Sylvia Francis Zalzal; P. Lavoie; M. Kunikata; W.-Y. Chen; P.H. Krebsbach; Y. Yamada; L. Hammarström; J.P. Simmer; Alan G. Fincham; Malcolm L. Snead; Charles E. Smith

SUMMARY Mineralized tissues are unique in using proteins to attract and organize calcium and phosphate ions into a structured mineral phase. A precise knowledge of the expression and extracellular distribution of matrix proteins is therefore very important in understanding their function. The purpose of this investigation was to obtain comparative information on the expression, intracellular and extracellular distribution, and dynamics of proteins representative of the two main classes of enamel matrix proteins. Amelogenins were visualized using an antibody and an mRNA probe prepared against the major alternatively spliced isoform in rodents, and nonamelogenins by antibodies and mRNA probes specific to one enamel protein referred to by three names: ameloblastin, amelin, and sheathlin. Qualitative and quantitative immunocytochemistry, in combination with immunoblotting and in situ hybridization, indicated a correlation between mRNA signal and sites of protein secretion for amelogenin, but not for ameloblastin, during the early presecretory and mid-to late maturation stages, during which mRNA signals were detected but no proteins appeared to be secreted. Extracellular amelogenin immunoreactivity was generally weak near secretory surfaces, increasing over a distance of about 1.25 μm to reach a level slightly above an amount expected if the protein were being deposited evenly across the enamel layer. Immunolabeling for ameloblastin showed an inverse pattern, with relatively more gold particles near secretory surfaces and much fewer deeper into the enamel layer. Administration of brefeldin A and cycloheximide to stop protein secretion revealed that the immunoblotting pattern of amelogenin was relatively stable, whereas ameloblastin broke down rapidly into lower molecular weight fragments. The distance from the cell surface at which immunolabeling for amelogenin stabilized generally corresponded to the point at which that for ameloblastin started to show a net reduction. These data suggest a correlation between the distribution of amelogenin and ameloblastin and that intact ameloblastin has a transient role in promoting/stabilizing crystal elongation.


Biopolymers | 1998

Interaction of amelogenin with hydroxyapatite crystals: An adherence effect through amelogenin molecular self‐association

Janet Moradian-Oldak; J. Tan; Alan G. Fincham

At the secretory stage of tooth enamel formation the majority of the organic matrix is composed of amelogenin proteins that are believed to provide the scaffolding for the initial carbonated hydroxyapatite crystals to grow. The primary objective of this study was to investigate the interaction between amelogenins and growing apatite crystals. Two in vitro strategies were used: first, we examined the influence of amelogenins as compared to two other macromolecules, on the kinetics of seeded growth of apatite crystals; second, using transmission electron micrographs of the crystal powders, based on a particle size distribution study, we evaluated the effect of the macromolecules on the aggregation of growing apatite crystals. Two recombinant amelogenins (rM179, rM166), the synthetic leucine-rich amelogenin polypeptide (LRAP), poly(L-proline), and phosvitin were used. It was shown that the rM179 amelogenin had some inhibitory effect on the kinetics of calcium hydroxyapatite seeded growth. The inhibitory effect, however, was not as destructive as that of other macromolecules tested. The degree of inhibition of the macromolecules was in the order of phosvitin > LRAP > poly(L-proline) > rM179 > rM166. Analysis of particle size distribution of apatite crystal aggregates indicated that the full-length amelogenin protein (rM179) caused aggregation of the growing apatite crystals more effectively than other macromolecules. We propose that during the formation of hydroxyapatite crystal clusters, the growing apatite crystals adhere to each other through the molecular self-association of interacting amelogenin molecules. The biological implications of this adherence effect with respect to enamel biomineralization are discussed.


Biochimica et Biophysica Acta | 1989

Human and mouse cementum proteins immunologically related to enamel proteins.

Harold C. Slavkin; Conny Bessem; Alan G. Fincham; Pablo Bringas; Valentino Santos; Malcolm L. Snead; Margarita Zeichner-David

SDS-polyacrylamide gel electrophoresis, immunoblot and amino acid composition analyses were applied to human and mouse acellular cementum proteins immunologically related to enamelins and amelogenins. In this analysis, anti-mouse amelogenin, anti-human enamelin and synthetic peptide (e.g., -LPPHPGHPGYIC-) antibodies were shown to cross-react with tooth crown-derived enamelin with a molecular mass of 72,000 Da (72 kDa), amelogenins (26 kDa), and also to four human cementum proteins (72, 58, 50 and 26 kDa) and two mouse cementum proteins (72 and 26 kDa). Each of the antibodies recognized tooth root-derived cementum polypeptides which share one or more epitopes with tooth crown-derived enamel proteins. The molecular mass and isoelectric points for crown-derived and root-derived enamel-related proteins were similar. Analysis of human and mouse cementum proteins revealed a characteristic amino acid composition enriched in glutamyl, serine, glycine, alanine, proline, valine and leucine residues; compared to the major enamel protein amelogenin, cementum proteins were low in proline, histidine and methionine. The human and mouse putative intermediate cementum proteins appear to represent a distinct class of enamel-related proteins. Moreover, these results support the hypothesis that epithelial root sheath epithelia express several cementum proteins immunologically related to canonical enamel proteins.


Calcified Tissue International | 1994

Alternative splicing of the mouse amelogenin primary RNA transcript

James P. Simmer; C.-C. Hu; Eduardo C. Lau; P. Sarte; Harold C. Slavkin; Alan G. Fincham

A heterogeneous mixture of amelogenins can be extracted from developing tooth enamel matrix. In an attempt to discover the extent to which alternative splicing of the amelogenin primary RNA transcript can generate unique isoforms, we have conducted a thorough search for cDNAs amplified by reverse transcription-polymerase chain reaction (RT-PCR). Over 2400 colonies were screened by colony hybridization. Seven different alternatively spliced amelogenin mRNAs were isolated. The predicted translation products of the messages are 194, 180, 156, 141, 74, 59, and 44 amino acids in length. RT-PCR amplification products not predicted by these seven amelogenin cDNAs were characterized. The intron separating exons 5 and 6 was cloned and sequenced. Using rapid amplification of cDNA ends (RACE) techniques, the 5′ ends of the amelogenin mRNAs were cloned and characterized. The finding that the same exon 1 is common to all of the cloned mRNAs indicates that mouse amelogenin is transcribed from a single promoter. The mouse amelogenin transcription and translation initiation sites, the 5′ untranslated leader, and the segment encoding the signal peptide were determined. The distinctly nonamelogenin-like exon 4, first observed in human amelogenin cDNAs, has also been found in mice. Antibodies were raised to synthetic exon 4-encoded polypeptides and used to immunostain Western transfers and histologic tooth sections.


Archives of Oral Biology | 1991

Amelogenin post-secretory processing during biomineralization in the postnatal mouse molar tooth

Alan G. Fincham; Yiyuan Hu; Eduardo C. Lau; Harold C. Slavkin; Malcolm L. Snead

The primary structures, molecular genetics and biosynthesis of the amelogenin protein of the developing tooth are established, but knowledge of their subsequent post-secretory processing and its relation to enamel biomineralization is fragmentary. Preparations of tooth matrix proteins were isolated from molars (M1) of mice from birth to 15 days and analysed by SDS-PAGE and immunochemical methods. Amelogenin proteins, isolated and partially purified by HPLC, were characterized by amino acid analysis and SDS-PAGE. At birth a 26 kDa amelogenin was present that during subsequent developmental stages generated a series of 20-25 kDa amelogenins differing in apparent size by approximately 1 kDa. Amino acid analyses showed that all these amelogenins have amino-terminal TRAP sequences; analyses for both glycosylation and phosphorylation were negative. It is suggested that these post-secretory amelogenins are generated by a sequence of specific carboxy-terminal cleavages, and that the observed post-secretory processing of amelogenin is functionally linked to the structure of the enamel matrix and the control of crystallite development.


Journal of Dental Research | 2002

Elongated Growth of Octacalcium Phosphate Crystals in Recombinant Amelogenin Gels under Controlled Ionic Flow

Mayumi Iijima; Yutaka Moriwaki; H.B. Wen; Alan G. Fincham; Janet Moradian-Oldak

Amelogenin proteins constitute the primary structural entity of the extracellular protein framework of the developing enamel matrix. Recent data on the interactions of amelogenin with calcium phosphate crystals support the hypothesis that amelogenins control the oriented and elongated growth of enamel carbonate apatite crystals. To exploit further the molecular mechanisms involved in amelogenin-calcium phosphate mineral interactions, we conducted in vitro experiments to examine the effect of amelogenin on synthetic octacalcium phosphate (OCP) crystals. A 10% (wt/vol) recombinant murine amelogenin (rM179, rM166) gel was constructed with nanospheres of about 10- to 20-nm diameter, as observed by atomic force microscopy. The growth of OCP was modulated uniquely in 10% rM179 and rM166 amelogenin gels, regardless of the presence of the hydrophilic C-terminal residues. Fibrous crystals grew with large length-to-width ratio and small width-to-thickness ratio. Both rM179 and rM166 enhanced the growth of elongated OCP crystals, suggesting a relationship to the initial elongated growth of enamel crystals.


Journal of Dental Research | 2000

Dose-dependent Modulation of Octacalcium Phosphate Crystal Habit by Amelogenins:

H.B. Wen; Janet Moradian-Oldak; Alan G. Fincham

In vitro studies on interactions between amelogenins and calcium phosphate crystals are critical for elucidating biomineralization mechanisms of tooth enamel. This work was aimed at investigating the effects of native porcine amelogenins on octacalcium phosphate (OCP) crystal growth in a gelatin gel. We prepared OCP mineral discs by circulating calcium and phosphate solutions on the opposite ends of the gels loaded with 0-2% amelogenin for one week. A dose-dependent modulation of OCP crystal habit by amelogenins was observed by scanning electron microscopy. While the incorporation of 0.125, 0.25, or 0.5% amelogenins showed no significant effect on the crystal morphology, in the presence of I and 2% amelogenins, the crystals were remarkably longer, having an average aspect ratio 3-5 times greater than that of those formed in the control gels. Transmission electron microscopy and atomic force microscopy suggested that amelogenin assemblies selectively blocked b-axial development, resulting in the c-axial elongation of OCP crystals.

Collaboration


Dive into the Alan G. Fincham's collaboration.

Top Co-Authors

Avatar

Janet Moradian-Oldak

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Harold C. Slavkin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Malcolm L. Snead

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Margarita Zeichner-David

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Eduardo C. Lau

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.B. Wen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Pablo Bringas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Wendy Leung

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge