Alan G. Porter
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan G. Porter.
Cell Death & Differentiation | 1999
Alan G. Porter; Reiner U. Jänicke
Caspases are crucial mediators of programmed cell death (apoptosis). Among them, caspase-3 is a frequently activated death protease, catalyzing the specific cleavage of many key cellular proteins. However, the specific requirements of this (or any other) caspase in apoptosis have remained largely unknown until now. Pathways to caspase-3 activation have been identified that are either dependent on or independent of mitochondrial cytochrome c release and caspase-9 function. Caspase-3 is essential for normal brain development and is important or essential in other apoptotic scenarios in a remarkable tissue-, cell type- or death stimulus-specific manner. Caspase-3 is also required for some typical hallmarks of apoptosis, and is indispensable for apoptotic chromatin condensation and DNA fragmentation in all cell types examined. Thus, caspase-3 is essential for certain processes associated with the dismantling of the cell and the formation of apoptotic bodies, but it may also function before or at the stage when commitment to loss of cell viability is made.
Oncogene | 2000
Ingo H. Engels; Ania Stepczynska; Christopher Stroh; Kirsten Lauber; Christoph P. Berg; Ralf Schwenzer; Harald Wajant; Reiner U. Jänicke; Alan G. Porter; Claus Belka; Michael Gregor; Klaus Schulze-Osthoff; Sebastian Wesselborg
Caspase-8 plays an essential role in apoptosis triggered by death receptors. Through the cleavage of Bid, a proapoptotic Bcl-2 member, it further activates the mitochondrial cytochrome c/Apaf-1 pathway. Because caspase-8 can be processed also by anticancer drugs independently of death receptors, we investigated its exact role and order in the caspase cascade. We show that in Jurkat cells either deficient for caspase-8 or overexpressing its inhibitor c-FLIP apoptosis mediated by CD95, but not by anticancer drugs was inhibited. In the absence of active caspase-8, anticancer drugs still induced the processing of caspase-9, -3 and Bid, indicating that Bid cleavage does not require caspase-8. Overexpression of Bcl-xL prevented the processing of caspase-8 as well as caspase-9, -6 and Bid in response to drugs, but was less effective in CD95-induced apoptosis. Similar responses were observed by overexpression of a dominant-negative caspase-9 mutant. To further determine the order of caspase-8 activation, we employed MCF7 cells lacking caspase-3. In contrast to caspase-9 that was cleaved in these cells, anticancer drugs induced caspase-8 activation only in caspase-3 transfected MCF7 cells. Thus, our data indicate that, unlike its proximal role in receptor signaling, in the mitochondrial pathway caspase-8 rather functions as an amplifying executioner caspase.
The EMBO Journal | 1996
Reiner U. Jänicke; P. A. Walker; Xiao-Yu Lin; Alan G. Porter
Interleukin 1beta‐converting enzyme‐like (ICE‐like) proteases are important mediators of apoptosis in diverse cell types and organisms. However, the role of these proteases in apoptosis cannot be satisfactorily explained on the basis of the physiological functions of their known substrates. Here we show that the C‐terminal 42 amino acid peptide of the retinoblastoma (Rb) protein, an important cell cycle regulator with a known anti‐apoptotic function, is specifically cleaved off by an ICE‐like protease in tumour necrosis factor (TNF)‐ and staurosporine‐induced apoptosis. Cleavage of Rb induced by TNF was blocked in vivo and in vitro by two specific inhibitors of ICE‐like proteases, and in vitro by a point mutation (Asp886 to Ala) within the ICE‐like protease cleavage site of Rb, (883)DEAD(886). An antibody raised against the C‐terminal 15 amino acid peptide of Rb recognized the full‐length but not the cleaved form of Rb. The extent of Rb cleavage correlated directly with TNF‐induced apoptosis in all tumour cell lines examined. Cleaved Rb bound cyclin D3 and inhibited the transcriptional activity of E2F‐1, but failed to bind to the regulatory protein MDM2, which has been implicated in apoptosis. As Rb suppresses cell death and its C‐terminus has important regulatory functions, our results suggest that Rb cleavage is an important event in apoptosis.
The EMBO Journal | 1996
Michael L. Sprengart; Eckart Fuchs; Alan G. Porter
The downstream box (DB) was originally described as a translational enhancer of several Escherichia coli and bacteriophage mRNAs located just downstream of the initiation codon. Here, we introduced nucleotide substitutions into the DB and Shine‐Dalgarno (SD) region of the highly active bacteriophage T7 gene 10 ribosome binding site (RBS) to examine the possibility that the DB has an independent and functionally important role. Eradication of the SD sequence in the absence of a DB abolished the translational activity of RBS fragments that were fused to a dihydrofolate reductase reporter gene. In contrast, an optimized DB at various positions downstream of the initiation codon promoted highly efficient protein synthesis despite the lack of a SD region. The DB was not functional when shifted upstream of the initiation codon to the position of the SD sequence. Nucleotides 1469–1483 of 16S rRNA (‘anti‐downstream box’) are complementary to the DB, and optimizing this complementarity strongly enhanced translation in the absence and presence of a SD region. We propose that the stimulatory interaction between the DB and the anti‐DB places the start codon in close contact with the decoding region of 16S rRNA, thereby mediating independent and efficient initiation of translation.
Cell Death & Differentiation | 2003
H Hentze; X Y Lin; M S K Choi; Alan G. Porter
AbstractThe potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1β in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.
The EMBO Journal | 2005
Alexander Urbano; Umayal Lakshmanan; Poh‑Heok Choo; Jair Chau Kwan; Poh Yong Ng; Ke Guo; Saravanakumar Dhakshinamoorthy; Alan G. Porter
Apoptosis‐inducing factor (AIF) exhibits reactive oxygen species (ROS)‐generating NADH oxidase activity of unknown significance, which is dispensable for apoptosis. We knocked out the aif gene in two human colon carcinoma cell lines that displayed lower mitochondrial complex I oxidoreductase activity and produced less ROS, but showed increased sensitivity to peroxide‐ or drug‐induced apoptosis. AIF knockout cells failed to form tumors in athymic mice or grow in soft agar. Only AIF with intact NADH oxidase activity restored complex I activity and anchorage‐independent growth of aif knockout cells, and induced aif‐transfected mouse NIH3T3 cells to form foci. AIF knockdown in different carcinoma cell types resulted in lower superoxide levels, enhanced apoptosis sensitivity and loss of tumorigenicity. Antioxidants sensitized AIF‐expressing cells to apoptosis, but had no effect on tumorigenicity. In summary, AIF‐mediated resistance to chemical stress involves ROS and probably also mitochondrial complex I. AIF maintains the transformed state of colon cancer cells through its NADH oxidase activity, by mechanisms that involve complex I function. On both counts, AIF represents a novel type of cancer drug target.
Trends in Cell Biology | 1999
Alan G. Porter
In programmed cell death (apoptosis), receptor-generated or other signals are transmitted to all cellular compartments, resulting in an apoptotic cell with extensive cytoplasmic and nuclear alterations. Protein translocation is now recognized as being crucial in the induction, amplification and regulation of this process. Diverse mechanisms trigger protein translocation to and from the plasma membrane, mitochondrion and nucleus during apoptosis. This review discusses where, why and how the various protein-translocation events take place and highlights their importance in the execution and regulation of apoptosis.
Molecular and Cellular Biology | 1994
Reiner U. Jänicke; Fiona Lee; Alan G. Porter
The phosphoprotein c-Myc has the potential to kill cells by apoptosis. To investigate whether c-Myc is involved in tumor necrosis factor alpha (TNF-alpha)-mediated cell killing, we have examined two HeLa cell lines (D98 and H21) which show dramatic differences in their susceptibilities to TNF-alpha cytotoxicity. Northern (RNA) blot analyses showed that there were no significant differences between these cell lines in basal or TNF-alpha-induced mRNA expression for a variety of proteins, including manganous superoxide dismutase, A20 zinc finger protein, plasminogen activator inhibitor type 2, and hsp70, all of which are known to influence the susceptibility of certain cells to TNF-alpha killing. On the other hand, there was a dramatic increase in c-Myc mRNA expression in TNF-alpha-sensitive D98 cells, but not in TNF-alpha-resistant H21 cells, which was only observed when the cells were treated with cycloheximide. Western blot (immunoblot) analyses revealed that even in the absence of TNF-alpha or cycloheximide, c-Myc was detectable only in nuclear extracts of TNF-alpha-sensitive D98 cells, implying a role for preexisting c-Myc in TNF-alpha killing. In support of this interpretation, a c-myc antisense oligonucleotide specifically inhibited the TNF-alpha killing of D98 cells, provided that the oligonucleotide was added 6 h prior to TNF-alpha treatment. Either dexamethasone treatment or transient expression of c-myc antisense cDNA fragments decreased nuclear c-Myc in D98 cells and rendered the cells more resistant to TNF-alpha cytotoxicity. Nuclear c-Myc was also detectable in a TNF-alpha-sensitive human HT-1080 fibrosarcoma cell line, but it was undetectable in a derivative of HT-1080 (SS-HT-1080) known to be resistant to TNF-alpha killing because of overexpression of plasminogen activator inhibitor type 2. HT-1080 cells transfected with antisense c-myc cDNA had significantly less nuclear c-Myc and were resistant to TNF-alpha cytotoxicity. Together, these data indicate that a nuclear transcription factor, c-Myc, plays an important role in sensitizing two different tumor cell types to TNF-alpha cytotoxicity.
Journal of Biological Chemistry | 1998
Pei-Lin Mao; Yalin Jiang; Boon Yu Wee; Alan G. Porter
The interleukin-1β-converting enzyme-like protease precursor, pro-caspase-1, has an N-terminal prodomain that is removed during cleavage activation of the protease. Here we show that tumor necrosis factor treatment of HeLa cells induced apoptosis without detectable proteolytic activation of caspase-1 in the cytosol. Instead, tumor necrosis factor induced the translocation of pro-caspase-1 to the nucleus where it was proteolytically activated, releasing the intact prodomain. We identified a nuclear localization signal in the prodomain, which was required for translocation of both pro-caspase-1 as well as its prodomain to the nucleus. Surprisingly, transfected MCF-7 carcinoma or embryonic kidney 293T cells expressing the prodomain alone underwent apoptosis. These results show that death signal-induced nuclear targeting is a novel activity of a caspase prodomain and indicate that caspase-1 and its prodomain may have hitherto unsuspected nuclear functions in apoptosis.
Journal of Biological Chemistry | 1999
Patrick W. P. Ng; Alan G. Porter; Reiner U. Jänicke
Caspase-10/a (Mch4) and caspase-10/b (FLICE2) are related death effector domain-containing cysteine aspartases presumed to be at or near the apex of apoptotic signaling pathways. We report the cloning and characterization of two novel proteins that are splice isoforms of the caspase-10 family. Caspase-10/c is a truncated protein that is essentially a prodomain-only form of the caspase that lacks proteolytic activity in vitro but efficiently induces the formation of perinuclear filamentous structures and cell death in vivo. Caspase-10/c mRNA is specifically up-regulated upon TNF stimulation, suggesting a potential role of this isoform in amplifying the apoptotic response to extracellular stimuli such as cytokines. Caspase-10/d is a hybrid of the known caspases Mch4 and FLICE2, as it is identical to FLICE2 except for the small (p12) catalytic subunit, which is identical to Mch4. Caspase-10/d is proteolytically activein vitro and also induces cell death in vivo, although it is less active than Mch4. The mRNAs for all known isoforms of caspase-10 are abundantly expressed in fetal lung, kidney, and skeletal muscle but are very poorly expressed or absent in these tissues in the adult, implying a possible role for the caspase-10 family in fetal development.