Alan H. Fairlamb
University of Dundee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan H. Fairlamb.
Nature | 2002
Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
Molecular Microbiology | 2002
S. Krieger; W. Schwarz; Mark R. Ariyanayagam; Alan H. Fairlamb; R. L. Krauth-Siegel; Christine Clayton
In Kinetoplastida, trypanothione and trypanothione reductase (TRYR) provide an intracellular reducing environment, substituting for the glutathione–glutathione reductase system found in most other organisms. To investigate the physiological role of TRYR in Trypanosoma brucei, we generated cells containing just one trypanothione reductase gene, TRYR, which was under the control of a tetracycline‐inducible promoter. This enabled us to regulate TRYR activity in the cells from less than 1% to 400% of wild‐type levels by adjusting the concentration of added tetracycline. In normal growth medium (which contains reducing agents), trypanosomes containing less than 10% of wild‐type enzyme activity were unable to grow, although the levels of reduced trypanothione and total thiols remained constant. In media lacking reducing agents, hypersensitivity towards hydrogen peroxide (EC50 = 3.5 μM) was observed compared with the wild type (EC50 = 223 μM). The depletion of TRYR had no effect on susceptibility to melarsen oxide. The infectivity and virulence of the parasites in mice was dependent upon tetracycline‐regulated TRYR activity: if the trypanosomes were injected into mice in the absence of tetracycline, no infection was detectable; and when tetracycline was withdrawn from previously infected animals, the parasitaemia was suppressed.
The EMBO Journal | 1997
Carole Dumas; Marc Ouellette; Jorge Tovar; Mark Cunningham; Alan H. Fairlamb; Samira Tamar; Martin Olivier; Barbara Papadopoulou
Parasitic protozoa belonging to the order Kinetoplastida contain trypanothione as their major thiol. Trypanothione reductase (TR), the enzyme responsible for maintaining trypanothione in its reduced form, is thought to be central to the redox defence systems of trypanosomatids. To investigate further the physiological role of TR in Leishmania, we attempted to create TR‐knockout mutants by gene disruption in L.donovani and L.major strains using the selectable markers neomycin and hygromycin phosphotransferases. TR is likely to be an important gene for parasite survival since all our attempts to obtain a TR null mutant in L.donovani failed. Instead, we obtained mutants with a partial trisomy for the TR locus where, despite the successful disruption of two TR alleles by gene targeting, a third TR copy was generated as a result of genomic rearrangements involving the translocation of a TR‐containing region to a larger chromosome. Mutants of L.donovani and L.major possessing only one wild‐type TR allele express less TR mRNA and have lower TR activity compared with wild‐type cells carrying two copies of the TR gene. Significantly, these mutants show attenuated infectivity with a markedly decreased capacity to survive intracellularly within macrophages, provided that the latter are producing reactive oxygen intermediates.
Nature Immunology | 2003
Julio Aliberti; Jesus G. Valenzuela; Vern B. Carruthers; Sara Hieny; John F. Andersen; Hugues Charest; Caetano Reis e Sousa; Alan H. Fairlamb; José M. C. Ribeiro; Alan Sher
Toxoplasma gondii releases factors that potently stimulate production of interleukin-12 (IL-12) from dendritic cells (DCs). Purification of this activity showed that cyclophilin-18 (C-18) was its principal component, and antibodies generated against recombinant C-18 inhibited tachyzoite extract–induced synthesis of IL-12. Recombinant C-18 showed high affinity for and triggered cell signaling through CCR5, a chemokine receptor important in parasite-induced IL-12 production by DCs. These findings suggest that the unusual potency of T. gondii in inducing IL-12 from DCs results from its synthesis of a unique chemokine mimic that signals through CCR5. The ability to generate this strong protective response may benefit parasite transmission by preventing the protozoan from overwhelming its intermediate hosts.
Nature | 2010
Julie A. Frearson; Stephen Brand; Stuart P. McElroy; Laura A. T. Cleghorn; Ondrej Smid; Laste Stojanovski; Helen P. Price; M. Lucia S. Güther; Leah S. Torrie; David A. Robinson; Irene Hallyburton; Chidochangu P. Mpamhanga; James A. Brannigan; Anthony J. Wilkinson; Michael R. Hodgkinson; Raymond Hui; Wei Qiu; Olawale G. Raimi; Daan M. F. van Aalten; Ruth Brenk; Ian H. Gilbert; Kevin D. Read; Alan H. Fairlamb; Michael A. J. Ferguson; Deborah F. Smith; Paul G. Wyatt
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for ∼30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target—T. brucei N-myristoyltransferase—leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.
Molecular and Biochemical Parasitology | 1987
Alan H. Fairlamb; Graeme B. Henderson; Cyrus J. Bacchi; Anthony Cerami
The effect of D,L-alpha-difluoromethylornithine (DFMO) on thiol and polyamine levels in Trypanosoma brucei was investigated by isolating trypanosomes from infected rats treated with DFMO for 12-48 h. Concentrations of thiols, polyamines and other amino-compounds were measured by an automated high-performance liquid chromatography method. The levels of DFMO in rat plasma (0.02-1.34 mM) is similar to that found in the parasites (0.27-0.99 mM), concentrations which exceed the Ki of DFMO for T. brucei ornithine decarboxylase. Treatment with DFMO increases intracellular levels of ornithine, S-adenosylmethionine and decarboxylated S-adenosylmethionine and decreases putrescine and spermidine. Putrescine is undetectable after 12 h treatment with DFMO and after 48 h spermidine is decreased by 76%. By 48 h, the spermidine-glutathione conjugates glutathionylspermidine and dihydrotrypanothione (bis(glutathionyl)spermidine) are also decreased by 41 and 66%, respectively. In contrast, levels of glutathione show a slight increase. These changes in metabolite levels are consistent with the biosynthetic pathway proposed for Crithidia fasciculata, where trypanothione is synthesized from spermidine and glutathione via the intermediates N1- and N8-glutathionyl-spermidine. Trypanothione is thought to have two important roles in trypanosomatid metabolism: the maintenance of intracellular thiols in the correct redox state and in the removal of hydrogen peroxide and other hydroperoxides. Thus, it is proposed that depletion of this metabolite may be an important contributory factor to the selective toxic effect of DFMO, particularly in its synergistic effect with other trypanocidal drugs.
Structure | 1999
Charles S. Bond; Yihong Zhang; Matthew Berriman; Mark Cunningham; Alan H. Fairlamb; William N. Hunter
BACKGROUND Trypanothione reductase (TR) helps to maintain an intracellular reducing environment in trypanosomatids, a group of protozoan parasites that afflict humans and livestock in tropical areas. This protective function is achieved via reduction of polyamine-glutathione conjugates, in particular trypanothione. TR has been validated as a chemotherapeutic target by molecular genetics methods. To assist the development of new therapeutics, we have characterised the structure of TR from the pathogen Trypanosoma cruzi complexed with the substrate trypanothione and have used the structure to guide database searches and molecular modelling studies. RESULTS The TR-trypanothione-disulfide structure has been determined to 2.4 A resolution. The chemical interactions involved in enzyme recognition and binding of substrate can be inferred from this structure. Comparisons with the related mammalian enzyme, glutathione reductase, explain why each enzyme is so specific for its own substrate. A CH***O hydrogen bond can occur between the active-site histidine and a carbonyl of the substrate. This interaction contributes to enzyme specificity and mechanism by producing an electronic induced fit when substrate binds. Database searches and molecular modelling using the substrate as a template and the active site as receptor have identified a class of cyclic-polyamine natural products that are novel TR inhibitors. CONCLUSIONS The structure of the TR-trypanothione enzyme-substrate complex provides details of a potentially valuable drug target. This information has helped to identify a new class of enzyme inhibitors as novel lead compounds worthy of further development in the search for improved medicines to treat a range of parasitic infections.
Molecular and Biochemical Parasitology | 2001
Mark R. Ariyanayagam; Alan H. Fairlamb
The relative amounts of ovothiol A (N(1)-methyl-4-mercaptohistidine) and trypanothione [N(1),N(8)-bis(glutathionyl)spermidine] have been determined in all life cycle stages of representative trypanosomatids (Leishmania spp, Crithidia fasciculata, Trypanosoma cruzi and T. brucei). Ovothiol A is present in all insect stages with intracellular concentrations of >1 mM for five species of Leishmania promastigotes and <0.25 mM for other trypanosomatids. In Leishmania promastigotes, ovothiol A can exceed trypanothione content particularly in late logarithmic and stationary phases of growth. In the other trypanosomatids, it represents less than 10% of the total thiol pool. Although amastigotes of L. major and L. donovani contain equivalent amounts of glutathione and trypanothione, ovothiol A is present in the former but absent in the latter. Ovothiol A is present in all developmental stages of T. cruzi but absent in bloodstream trypomastigotes of T. brucei. No ovothiol reductase activity could be detected in dialysed parasite extracts. Ovothiol disulphide is not a substrate for trypanothione reductase, although it can be reduced by the concerted action of trypanothione and trypanothione reductase. No ovothiol-dependent peroxidase activity was present in Leishmania extracts. Although ovothiol A can act as a non-enzymatic scavenger of hydrogen peroxide, it is less efficient than trypanothione. Second order rate constants were determined with trypanothione>glutathionylspermidine>ovothiol>glutathione. Given the presence of an active trypanothione peroxidase system in all these trypanosomatids, it is concluded that under physiological conditions, ovothiol is unlikely to play a major role in the metabolism of hydrogen peroxide in intact cells. Nonetheless, since ovothiol is absent in host macrophage, kidney and CHO cells, this metabolite may have other important functional roles in trypanosomatids that could be exploited as a chemotherapeutic target.
Nature | 2015
Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Tetrahedron | 2003
Kelly Chibale; Mark Visser; Donelly A. van Schalkwyk; Peter J. Smith; Ahilan Saravanamuthu; Alan H. Fairlamb
Abstract Xanthene derivatives were synthesized and evaluated for their potential as trypanothione reductase (TryR) inhibitors and chloroquine (CQ) potentiating agents. Some derivatives displayed inhibitory activity against TryR comparable to known tricyclic anti-depressants. On the other hand a number of derivatives increased CQ accumulation and potentiating effects in a resistant strain of Plasmodium falciparum with one compound also displaying strong intrinsic antimalarial activity.