Alan H. Kvanli
University of North Texas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan H. Kvanli.
Journal of Forensic Sciences | 2009
Kathleen A. Kasper; Dana Austin; Alan H. Kvanli; Tara R. Rios; David R. Senn
Abstract: Evaluating third molars from 950 Hispanic individuals aged 12–22 years using Demirjian’s schematic for crown and root formation found that Hispanic third molar development was 8–18 months faster than American Caucasians as reported by Mincer, Harris and Berryman in 1993. This represents a statistically significant increase. Earlier development was more apparent in the later stages F through H. Hispanic males reach developmental stages faster than Hispanic females and maxillary third molars reach developmental stages faster than mandibular third molars in both sexes. The earliest age observed for stages B–H (e.g., Stage H first observed at age 13.92 years in females) and the oldest age observed for Stages B–G were developed to facilitate age prediction of unknown individuals. Prediction tables for minimum and maximum age for an observed stage (e.g., if a female maxillary third molar is stage F it means she is older than 13 years) for each sex‐jaw group were calculated.
International Journal of Forecasting | 1987
Laurette Poulos; Alan H. Kvanli; Robert Pavur
Abstract The focus of the research described in this paper is on presenting an automated forecasting system that encompasses an objective ARIMA method with the Holt-Winters procedure in a weighted averaging scheme. The system is applied to M-Competition data and the results are compared to the subjective Box-Jenkins forecasts as well as to results from two other automated methods, CAPRI and SIFT. The comparison reveals that especially for one-step ahead forecasting, the automated system competes favorably with both automated methods and the individualized Box-Jenkins analysis.
Journal of Business & Economic Statistics | 1998
Alan H. Kvanli; Yaung Kaung Shen; Lih Yuan Deng
The likelihood ratio method is used to construct a confidence interval for a population mean when sampling from a population with certain characteristics found in many applications, such as auditing. Specifically, a sample taken from this type of population usually consists of a very large number of zero values, plus a small number of nonzero values that follow some continuous distribution. In this situation, the traditional confidence interval constructed for the population mean is known to be unreliable. This article derives confidence intervals based on the likelihood-ratio-test approach by assuming (1) a normal distribution (normal algorithm) and (2) an exponential distribution (exponential algorithm). Because the error population distribution is usually unknown, it is important to study the robustness of the proposed procedures. We perform an extensive simulation study to compare the percentage of confidence intervals containing the true population mean using the two proposed algorithms with the perc...
Journal of Business Research | 1986
Alan H. Kvanli; J.J. Buckley
Abstract This paper stresses the use of goal programming as a what-if device and examines two methods of applying goal programming to a financial planning problem. Traditional goal programming ranks the competing goals by assigning preemptive priority factors to the corresponding deviations; another approach is to provide more flexible penalty functions and to modify the penalties for missing the various goals during subsequent what-if sessions. Examples are provided that illustrate that 1) the user is provided with more potential solutions in the search for a satisfactory one if the latter method is used, and 2) this method produces a better mix of deviations-from-goal. This procedure was applied by corporate financial planners at Texas Instruments, Inc. and was found to be a very flexible and powerful planning instrument.
Journal of Statistical Planning and Inference | 1988
C.H. Kapadia; Alan H. Kvanli; Kwan R. Lee
Abstract The purpose of this paper is to derive minimal sufficient statistics for the balanced incomplete block design and the group divisible partially balanced incomplete block design when the Eisenhart Model III (mixed model) is assumed. The results are identical to Hultquist and Graybills (1965) and Hirotsus (1965) for the same model without interaction, except for the addition of a statistic, ∑ijY2ij•.
Archive | 1989
Alan H. Kvanli; Robert Pavur; Carl Steven Guynes
Archive | 1995
Alan H. Kvanli; Carl Stephen Guynes; Robert Pavur
Archive | 2005
Alan H. Kvanli; Robert Pavur; Kellie B. Keeling
Archive | 2002
Alan H. Kvanli; Robert Pavur; Kellie R. Keeling
Archive | 1992
Alan H. Kvanli; Robert Pavur; Carl Stephen Guynes