Alan H. Schulman
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan H. Schulman.
Nature Reviews Genetics | 2007
Thomas Wicker; François Sabot; Aurélie Hua-Van; Jeffrey L. Bennetzen; Pierre Capy; Boulos Chalhoub; Andrew J. Flavell; Philippe Leroy; Michele Morgante; Olivier Panaud; Etienne Paux; Phillip SanMiguel; Alan H. Schulman
Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.
Nature | 2012
Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder
Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.
Theoretical and Applied Genetics | 1999
Ruslan Kalendar; T. Grob; M. Regina; Anu Suoniemi; Alan H. Schulman
Abstract The BARE-1 retrotransposon is an active, dispersed, and highly abundant component of the genome of barley (Hordeum vulgare) and other species in its genus. Like all retrotransposons of its kind, BARE-1 is bounded by long terminal repeats (LTRs). We have developed two amplification-based marker methods based on the position of given LTRs within the genome. The IRAP (Inter-Retrotransposon Amplified Polymorphism) markers are generated by the proximity of two LTRs using outward-facing primers annealing to LTR target sequences. In REMAP (REtrotransposon-Microsatellite Amplified Polymorphism), amplification between LTRs proximal to simple sequence repeats such as constitute microsatellites produces markers. The methods can distinguish between barley varieties and produce fingerprint patterns for species across the genus. The patterns indicate that although the BARE-1 family of retrotransposons is disperse, these elements are locally clustered or nested and often found near tandem arrays of a simple sequence repeat.
The Plant Cell | 1999
Annu Suoniemi; Kesara Anamthawat-Jónsson; Jaakko Tanskanen; Alex Beharav; Eviatar Nevo; Alan H. Schulman
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 × 103 full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial “return ticket from genomic obesity.”
Plant Molecular Biology | 1993
Inari Manninen; Alan H. Schulman
Retroviruses and retrotransposons make up the broad class of retroelements replicating and transposing via reverse transcriptase. Retroelements have recently been found to be ubiquitous in the plants. We report here the isolation, sequence and analysis of a retroelement from barley (Hordeum vulgare L.) with all the features of a copia-like retrotransposon. This is named BARE-1 (for BArley RetroElement 1), the first such element described for barley. BARE-1 is 12 088 bp, with long terminal repeats (LTRs) of 1829 bp containing perfect 6 bp inverted repeats at their ends and flanked by 4 bp direct repeats in the host DNA. Between the long terminal repeats is an internal domain with a derived amino acid sequence of 1285 residues, bearing homology to the gag, pro, int and rt domains of retroviruses and both plant and non-plant copia-like retrotransposons. Cultivated barley contains about 5000 elements in the genome similar to the BARE-1 putative gag domain, but ten-fold more hybridizing to rt or LTR probes. The particular BARE-1 element reported here appears to be inactive, as the putative protein-coding domain is interrupted by four stop codons and a frameshift. In addition, the 3′ LTR is 4% divergent from the 5′ LTR and contains a 3135 bp insertion. Nevertheless, we have recently detected transcripts hybridizing to BARE-1 on northern blots, presumably from active copies. Analysis of BARE-1 expression and function in barley is currently underway.
Nature | 2017
Martin Mascher; Heidrun Gundlach; Axel Himmelbach; Sebastian Beier; Sven O. Twardziok; Thomas Wicker; Volodymyr Radchuk; Christoph Dockter; Peter E. Hedley; Joanne Russell; Micha Bayer; Luke Ramsay; Hui Liu; Georg Haberer; Xiao-Qi Zhang; Qisen Zhang; Roberto A. Barrero; Lin Li; Marco Groth; Marius Felder; Alex Hastie; Hana Šimková; Helena Staňková; Jan Vrána; Saki Chan; María Muñoz-Amatriaín; Rachid Ounit; Steve Wanamaker; Daniel M. Bolser; Christian Colmsee
Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.
Nature Protocols | 2006
Ruslan Kalendar; Alan H. Schulman
Retrotransposons can be used as markers because their integration creates new joints between genomic DNA and their conserved ends. To detect polymorphisms for retrotransposon insertion, marker systems generally rely on PCR amplification between these ends and some component of flanking genomic DNA. We have developed two methods, retrotransposon-microsatellite amplified polymorphism (REMAP) analysis and inter-retrotransposon amplified polymorphism (IRAP) analysis, that require neither restriction enzyme digestion nor ligation to generate the marker bands. The IRAP products are generated from two nearby retrotransposons using outward-facing primers. In REMAP, amplification between retrotransposons proximal to simple sequence repeats (microsatellites) produces the marker bands. Here, we describe protocols for the IRAP and REMAP techniques, including methods for PCR amplification with a single primer or with two primers and for agarose gel electrophoresis of the product using optimal electrophoresis buffers and conditions. This protocol can be completed in 1–2 d.
Plant Journal | 2013
Martin Mascher; Gary J. Muehlbauer; Daniel S. Rokhsar; Jarrod Chapman; Jeremy Schmutz; Kerrie Barry; María Muñoz-Amatriaín; Timothy J. Close; Roger P. Wise; Alan H. Schulman; Axel Himmelbach; Klaus F. X. Mayer; Uwe Scholz; Jesse Poland; Nils Stein; Robbie Waugh
Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes. Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de novo production of a genetically anchored linear assembly of the gene space of an organism. We demonstrate the power of the approach by reconstructing the chromosomal organization of the gene space of barley, a large, complex and highly repetitive 5.1 Gb genome. We evaluate the robustness of the new assembly by comparison to a recently released physical and genetic framework of the barley genome, and to various genetically ordered sequence-based genotypic datasets. The method is independent of the need for any prior sequence resources, and will enable rapid and cost-efficient establishment of powerful genomic information for many species.
Heredity | 2011
Ruslan Kalendar; Andrew J. Flavell; T H N Ellis; T Sjakste; Cédric Moisy; Alan H. Schulman
Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants.
Genetics | 2004
Ruslan Kalendar; Ofer Peleg; Kesara Anamthawat-Jónsson; Alexander Bolshoy; Alan H. Schulman
Retroviruses and LTR retrotransposons comprise two long-terminal repeats (LTRs) bounding a central domain that encodes the products needed for reverse transcription, packaging, and integration into the genome. We describe a group of retrotransposons in 13 species and four genera of the grass tribe Triticeae, including barley, with long, ∼4.4-kb LTRs formerly called Sukkula elements. The ∼3.5-kb central domains include reverse transcriptase priming sites and are conserved in sequence but contain no open reading frames encoding typical retrotransposon proteins. However, they specify well-conserved RNA secondary structures. These features describe a novel group of elements, called LARDs or large retrotransposon derivatives (LARDs). These appear to be members of the gypsy class of LTR retrotransposons. Although apparently nonautonomous, LARDs appear to be transcribed and can be recombinationally mapped due to the polymorphism of their insertion sites. They are dispersed throughout the genome in an estimated 1.3 × 103 full-length copies and 1.16 × 104 solo LTRs, indicating frequent recombinational loss of internal domains as demonstrated also for the BARE-1 barley retrotransposon.