Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Iacopi is active.

Publication


Featured researches published by Alan Iacopi.


Applied Physics Letters | 2013

Orientation-dependent stress relaxation in hetero-epitaxial 3C-SiC films

Francesca Iacopi; Glenn Walker; Li Wang; Laura Malesys; Shujun Ma; Ben Vaughan Cunning; Alan Iacopi

Residual stresses in epitaxial 3C-SiC films on silicon, for chosen growth conditions, appear determined by their growth orientation. Stress evaluation locally with Raman spectroscopy, and across a 150 mm wafer with curvature measurements, indicate that thin films can be grown on Si(100) with residual tensile stresses as low as 150 MPa. However, films on Si(111) retain a considerably higher stress, around 900 MPa, with only minor decrease versus film thickness. Stacking faults are indeed geometrically a less efficient relief mechanism for the biaxial strain of SiC films grown on Si(111) with 〈111〉 orientation. Residual stresses can be tuned by the epitaxial process temperatures.


ACS Applied Materials & Interfaces | 2017

Single-Crystalline 3C-SiC anodically Bonded onto Glass: An Excellent Platform for High-Temperature Electronics and Bioapplications

Hoang-Phuong Phan; Han-Hao Cheng; Toan Khac Dinh; Barry J. Wood; Tuan-Khoa Nguyen; Fengwen Mu; Harshad Kamble; Raja Vadivelu; Glenn Walker; Leonie Hold; Alan Iacopi; Ben Haylock; Dzung Viet Dao; Mirko Lobino; Tadatomo Suga; Nam-Trung Nguyen

Single-crystal cubic silicon carbide has attracted great attention for MEMS and electronic devices. However, current leakage at the SiC/Si junction at high temperatures and visible-light absorption of the Si substrate are main obstacles hindering the use of the platform in a broad range of applications. To solve these bottlenecks, we present a new platform of single crystal SiC on an electrically insulating and transparent substrate using an anodic bonding process. The SiC thin film was prepared on a 150 mm Si with a surface roughness of 7 nm using LPCVD. The SiC/Si wafer was bonded to a glass substrate and then the Si layer was completely removed through wafer polishing and wet etching. The bonded SiC/glass samples show a sharp bonding interface of less than 15 nm characterized using deep profile X-ray photoelectron spectroscopy, a strong bonding strength of approximately 20 MPa measured from the pulling test, and relatively high optical transparency in the visible range. The transferred SiC film also exhibited good conductivity and a relatively high temperature coefficient of resistance varying from -12 000 to -20 000 ppm/K, which is desirable for thermal sensors. The biocompatibility of SiC/glass was also confirmed through mouse 3T3 fibroblasts cell-culturing experiments. Taking advantage of the superior electrical properties and biocompatibility of SiC, the developed SiC-on-glass platform offers unprecedented potentials for high-temperature electronics as well as bioapplications.


Scientific Reports | 2015

Kinetic surface roughening and wafer bow control in heteroepitaxial growth of 3C-SiC on Si(111) substrates

Li Wang; Glenn Walker; Jessica Chai; Alan Iacopi; Alanna Fernandes; Sima Dimitrijev

A thin, chemically inert 3C-SiC layer between GaN and Si helps not only to avoid the “melt-back” effect, but also to inhibit the crack generation in the grown GaN layers. The quality of GaN layer is heavily dependent on the unique properties of the available 3C-SiC/Si templates. In this paper, the parameters influencing the roughness, crystalline quality, and wafer bow are investigated and engineered to obtain high quality, low roughness 3C-SiC/Si templates suitable for subsequent GaN growth and device processing. Kinetic surface roughening and SiC growth mechanisms, which depend on both deposition temperature and off-cut angle, are reported for heteroepitaxial growth of 3C-SiC on Si substrates. The narrower terrace width on 4° off-axis Si enhances the step-flow growth at 1200 °C, with the roughness of 3C-SiC remaining constant with increasing thickness, corresponding to a scaling exponent of zero. Crack-free 3C-SiC grown on 150-mm Si substrate with a wafer bow of less than 20 μm was achieved. Both concave and convex wafer bow can be obtained by in situ tuning of the deposited SiC layer thicknesses. The 3C-SiC grown on off-axis Si, compared to that grown on on-axis Si, has lower surface roughness, better crystallinity, and smaller bow magnitude.


Scientific Reports | 2015

Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

David Massoubre; Li Wang; Leonie Hold; Alanna Fernandes; Jessica Chai; Sima Dimitrijev; Alan Iacopi

Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers.


Key Engineering Materials | 2017

Pseudo-Hall Effect in Single Crystal n-Type 3C-SiC(100) Thin Film

Afzaal Qamar; Dzung Viet Dao; Jisheng Han; Alan Iacopi; Toan Dinh; Hoang Phuong Phan; Sima Dimitrijev

This article reports the first results on stress induced pseudo-Hall effect in single crystal n-type 3C-SiC(100) grown by LPCVD process. After the growth process, Hall devices were fabricated by standard photolithography and dry etching processes. The bending beam method was employed to study the stress induced changes in the electrical response of the fabricated Hall devices. It has been observed that when stress is applied to the 3C-SiC(100) Hall devices, the offset voltage of the Hall devices varies linearly with the applied compressive and tensile stresses which is called, the pseudo-Hall effect. The variation of the offset voltage of these Hall devices is also proportional to the applied input current. This variation of the offset voltage with the applied compressive and tensile stresses shows that single crystal n-type 3C-SiC(100) can be used for stress sensing applications.


Journal of Vacuum Science & Technology B | 2014

RF sputtering of polycrystalline (100), (002), and (101) oriented AlN on an epitaxial 3C-SiC (100) on Si(100) substrate

Abid Iqbal; Kien Chaik; Glenn Walker; Alan Iacopi; Faisal Mohd-Yasin; Sima Dimitrijev

In this paper, the RF sputtering of polycrystalline AlN thin film on epitaxial 3C-SiC(100) on Si(100) substrate is presented. The effect of nitrogen concentration, deposition temperature and sputtering pressure are studied. These parameters are optimized to improve the crystal quality and deposition rate. Nitrogen concentration was varied from 40% to 100%, and it was found that the maximum deposition rate was observed at 40%. The RF bias power on substrate was also varied from 100 to 400 W, and it was observed that the deposition rate increases proportionally. The process temperature was varied from 200 to 400 °C to see the effect on the crystal quality and deposition rate; it was found that temperature variation does not yield significant shifts. This paper is able to demonstrate a successful RF sputtering of a polycrystalline AlN (100), (101), and (002) on epitaxial 3C-SiC(100) using RF power supply of 550 W.


Materials Science Forum | 2013

Color Chart for Thin SiC Films Grown on Si Substrates

Li Wang; Sima Dimitrijev; Glenn Walker; Jisheng Han; Alan Iacopi; Philip Tanner; Leonie Hold; Yu Zhao; Francesca Iacopi

In this paper, a color chart was defined for thin SiC films grown on Si substrates. For SiC films thinner than 500 nm, the surface color was observed using an optical microscope with the incident light normally illuminated on the SiC surface. An image of the surface was then taken by a camera attached to the optical microscope and the surface color was defined using RGB code. For SiC films thicker than 500 nm, the image taken by the camera did not represent the real color of the SiC film. Therefore, for these thicker SiC films, the colors were defined by observing the films under daylight fluorescent lighting by naked eyes. It was found that the colors of the SiC films vary periodically as the thickness increased. No color saturation was found for SiC films up to 1185 nm thick.


ACS Applied Materials & Interfaces | 2017

Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications

Tuan-Khoa Nguyen; Hoang-Phuong Phan; Harshad Kamble; Raja Vadivelu; Toan Dinh; Alan Iacopi; Glenn Walker; Leonie Hold; Nam-Trung Nguyen; Dzung Viet Dao

Micromachined membranes are promising platforms for cell culture thanks to their miniaturization and integration capabilities. Possessing chemical inertness, biocompatibility, and integration, silicon carbide (SiC) membranes have attracted great interest toward biological applications. In this paper, we present the batch fabrication, mechanical characterizations, and cell culture demonstration of robust ultrathin epitaxial deposited SiC membranes. The as-fabricated ultrathin SiC membranes, with an ultrahigh aspect ratio (length/thickness) of up to 20 000, possess high a fracture strength up to 2.95 GPa and deformation up to 50 μm. A high optical transmittance of above 80% at visible wavelengths was obtained for 50 nm membranes. The as-fabricated membranes were experimentally demonstrated as an excellent substrate platform for bio-MEMS/NEMS cell culture with the cell viability rate of more than 92% after 72 h. The ultrathin SiC membrane is promising for in vitro observations/imaging of bio-objects with an extremely short optical access.


RSC Advances | 2016

Growth mechanism for alternating supply epitaxy: the unique pathway to achieve uniform silicon carbide films on multiple large-diameter silicon substrates

Li Wang; Sima Dimitrijev; A. Fissel; Glenn Walker; Jessica Chai; Leonie Hold; Alanna Fernandes; Nam-Trung Nguyen; Alan Iacopi

Low-cost large-diameter cubic silicon carbide (3C-SiC) film grown on silicon (Si) has been demonstrated to have a wide range of applications in photonics, electronics, photoelectrochemistry and micro-electro-mechanical system technologies. In this paper, the epitaxial growth of SiC on Si by low-pressure chemical vapour deposition is investigated. Two modes were employed to supply the precursors: the alternating supply and the simultaneous supply. Compared with SiC films grown at the same temperature by simultaneous supply epitaxy method, the SiC grown by alternating supply epitaxy (ASE) method has better crystallinity, smoother surface, and better thickness uniformity as confirmed by X-ray diffraction and atomic force microscopy characterisation. We propose the growth mechanism for ASE growth of 3C-SiC and validate it in detail experimentally. It is found that, Si deposition on SiC follows either Stranski–Krastanov mode or island growth mode, while SiC formation proceeds in two possible reaction paths: redistributing of the formed Si islands or smoothing of the formed SiC islands by decomposition migration process. Both reaction paths are driven by minimizing the surface free energy and reducing dangling bonds density. In summary, the key features of ASE are: (1) Si has a longer diffusion length and thus higher probability to adhere to a crystallographically favourable position; (2) undesirable gas phase reactions can be avoided. The obtained results indicate that ASE is a unique and economically viable method to prepare uniform 3C-SiC on multiple large-diameter Si wafers.


Scientific Reports | 2017

Excellent Rectifying Properties of the n-3C-SiC/p-Si Heterojunction Subjected to High Temperature Annealing for Electronics, MEMS, and LED Applications

Philip Tanner; Alan Iacopi; Hoang-Phuong Phan; Sima Dimitrijev; Leonie Hold; Kien Chaik; Glenn Walker; Dzung Viet Dao; Nam-Trung Nguyen

This work examines the stability of epitaxial 3C-SiC/Si heterojunctions subjected to heat treatments between 1000 °C and 1300 °C. Because of the potential for silicon carbide in high temperature and harsh environment applications, and the economic advantages of growing the 3C-SiC polytype on large diameter silicon wafers, its stability after high temperature processing is an important consideration. Yet recently, this has been thrown into question by claims that the heterojunction suffers catastrophic degradation at temperatures above 1000 °C. Here we present results showing that the heterojunction maintains excellent diode characteristics following heat treatment up to 1100 °C and while some changes were observed between 1100 °C and 1300 °C, diodes maintained their rectifying characteristics, enabling compatibility with a large range of device fabrication. The parameters of as-grown diodes were J0 = 1 × 10−11 A/mm2, n = 1.02, and +/−2V rectification ratio of 9 × 106. Capacitance and thermal current-voltage analysis was used to characterize the excess current leakage mechanism. The change in diode characteristics depends on diode area, with larger areas (1 mm2) having reduced rectification ratio while smaller areas (0.04 mm2) maintained excellent characteristics of J0 = 2 × 10−10 A/mm2, n = 1.28, and +/−2V ratio of 3 × 106. This points to localized defect regions degrading after heat treatment rather than a fundamental issue of the heterojunction.

Collaboration


Dive into the Alan Iacopi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge