Alan Kan
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan Kan.
Journal of The American Academy of Audiology | 2012
Ruth Y. Litovsky; Matthew J. Goupell; Shelly Godar; Tina M. Grieco-Calub; Gary L. Jones; Soha N. Garadat; Smita Agrawal; Alan Kan; Ann E. Todd; Christi Hess; Sara Misurelli
This report highlights research projects relevant to binaural and spatial hearing in adults and children. In the past decade we have made progress in understanding the impact of bilateral cochlear implants (BiCIs) on performance in adults and children. However, BiCI users typically do not perform as well as normal hearing (NH) listeners. In this article we describe the benefits from BiCIs compared with a single cochlear implant (CI), focusing on measures of spatial hearing and speech understanding in noise. We highlight the fact that in BiCI listening the devices in the two ears are not coordinated; thus binaural spatial cues that are available to NH listeners are not available to BiCI users. Through the use of research processors that carefully control the stimulus delivered to each electrode in each ear, we are able to preserve binaural cues and deliver them with fidelity to BiCI users. Results from those studies are discussed as well, with a focus on the effect of age at onset of deafness and plasticity of binaural sensitivity. Our work with children has expanded both in number of subjects tested and age range included. We have now tested dozens of children ranging in age from 2 to 14 yr. Our findings suggest that spatial hearing abilities emerge with bilateral experience. While we originally focused on studying performance in free field, where real world listening experiments are conducted, more recently we have begun to conduct studies under carefully controlled binaural stimulation conditions with children as well. We have also studied language acquisition and speech perception and production in young CI users. Finally, a running theme of this research program is the systematic investigation of the numerous factors that contribute to spatial and binaural hearing in BiCI users. By using CI simulations (with vocoders) and studying NH listeners under degraded listening conditions, we are able to tease apart limitations due to the hardware/software of the CI systems from limitations due to neural pathology.
Journal of the Acoustical Society of America | 2013
Alan Kan; Corey Stoelb; Ruth Y. Litovsky; Matthew J. Goupell
Bilateral cochlear implants (CIs) have provided some success in improving spatial hearing abilities to patients, but with large variability in performance. One reason for the variability is that there may be a mismatch in the place-of-stimulation arising from electrode arrays being inserted at different depths in each cochlea. Goupell et al. [(2013b). J. Acoust. Soc. Am. 133(4), 2272-2287] showed that increasing interaural mismatch led to non-fused auditory images and poor lateralization of interaural time differences in normal hearing subjects listening to a vocoder. However, a greater bandwidth of activation helped mitigate these effects. In the present study, the same experiments were conducted in post-lingually deafened bilateral CI users with deliberate and controlled interaural mismatch of single electrode pairs. Results show that lateralization was still possible with up to 3 mm of interaural mismatch, even when off-center, or multiple, auditory images were perceived. However, mismatched inputs are not ideal since it leads to a distorted auditory spatial map. Comparison of CI and normal hearing listeners showed that the CI data were best modeled by a vocoder using Gaussian-pulsed tones with 1.5 mm bandwidth. These results suggest that interaural matching of electrodes is important for binaural cues to be maximally effective.
Journal of the Acoustical Society of America | 2013
Matthew J. Goupell; Corey Stoelb; Alan Kan; Ruth Y. Litovsky
Although bilateral cochlear implantation has the potential to improve sound localization and speech understanding in noise, obstacles exist in presenting maximally useful binaural information to bilateral cochlear-implant (CI) users. One obstacle is that electrode arrays may differ in cochlear position by several millimeters, thereby stimulating different neural populations. Effects of interaural frequency mismatch on binaural processing were studied in normal-hearing (NH) listeners using band-limited pulse trains, thereby avoiding confounding factors that may occur in CI users. In experiment 1, binaural image fusion was measured to capture perceptual number, location, and compactness. Subjects heard a single, compact image on 73% of the trials. In experiment 2, intracranial image location was measured for different interaural time differences (ITDs) and interaural level differences (ILDs). For larger mismatch, locations perceptually shifted towards the ear with the higher carrier frequency. In experiment 3, ITD and ILD just-noticeable differences (JNDs) were measured. JNDs increased with decreasing bandwidth and increasing mismatch, but were always measurable up to 3 mm of mismatch. If binaural-hearing mechanisms are similar between NH and CI subjects, these results may explain reduced sensitivity of ITDs and ILDs in CI users. Large mismatches may lead to distorted spatial maps and reduced binaural image fusion.
Hearing Research | 2015
Alan Kan; Ruth Y. Litovsky
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled .
Ear and Hearing | 2015
Alan Kan; Ruth Y. Litovsky; Matthew J. Goupell
Objectives: In bilateral cochlear implant users, electrodes mapped to the same frequency range in each ear may stimulate different places in each cochlea due to an insertion depth difference of electrode arrays. This interaural place of stimulation mismatch can lead to problems with auditory image fusion and sensitivity to binaural cues, which may explain the large localization errors seen in many patients. Previous work has shown that interaural place of stimulation mismatch can lead to off-centered auditory images being perceived even though interaural time and level differences (ITD and ILD, respectively) were zero. Large interaural mismatches reduced the ability to use ITDs for auditory image lateralization. In contrast, lateralization with ILDs was still possible but the mapping of ILDs to spatial locations was distorted. This study extends the previous work by systematically investigating the effect of interaural place of stimulation mismatch on ITD and ILD sensitivity directly and examining whether “centering” methods can be used to mitigate some of the negative effects of interaural place of stimulation mismatch. Design: Interaural place of stimulation mismatch was deliberately introduced for this study. Interaural pitch-matching techniques were used to identify a pitch-matched pair of electrodes across the ears approximately at the center of the array. Mismatched pairs were then created by maintaining one of the pitch-matched electrodes constant, and systematically varying the contralateral electrode by two, four, or eight electrode positions (corresponding to approximately 1.5, 3, and 6 mm of interaural place of excitation differences). The stimuli were 300 msec, constant amplitude pulse trains presented at 100 pulses per second. ITD and ILD just noticeable differences (JNDs) were measured using a method of constant stimuli with a two-interval, two-alternative forced choice task. The results were fit with a psychometric function to obtain the JNDs. In experiment I, ITD and ILD JNDs were measured as a function of the simulated place of stimulation mismatch. In experiment II, the auditory image of mismatched pair was centered by adjusting the stimulation level according to a lateralization task. ITD and ILD JNDs were then remeasured and compared with the results of experiment I. Results: ITD and ILD JNDs were best (lowest thresholds) for pairs of electrodes at or near the pitch-matched pair. Thresholds increased systematically with increasing amounts of interaural mismatch. Deliberate and careful centering of auditory images did not significantly improve ITD JNDs but did improve ILD JNDs at very large amounts of simulated mismatch. Conclusions: Interaural place of stimulation mismatch decreases sensitivity to binaural cues that are important for accurate sound localization. However, deliberate and careful centering of auditory images does not seem to significantly counteract the effects of mismatch. Hence, to obtain maximal sound localization benefits of bilateral implantation, clinical and surgical techniques are needed that take into account differences in electrode array insertion depths across the ears.
Journal of the Acoustical Society of America | 2013
Matthew J. Goupell; Alan Kan; Ruth Y. Litovsky
Good localization accuracy depends on an auditory spatial map that provides consistent binaural information across frequency and level. This study investigated whether mapping bilateral cochlear implants (CIs) independently contributes to distorted perceptual spatial maps. In a meta-analysis, interaural level differences necessary to perceptually center sound images were calculated for 127 pitch-matched pairs of electrodes; many needed large current adjustments to be perceptually centered. In a separate experiment, lateralization was also found to be inconsistent across levels. These findings suggest that auditory spatial maps are distorted in the mapping process, which likely reduces localization accuracy and target-noise separation in bilateral CIs.
Otology & Neurotology | 2014
Brian C. Gartrell; Heath G. Jones; Alan Kan; Melanie Buhr-Lawler; Samuel P. Gubbels; Ruth Y. Litovsky
Objectives To evaluate methods for measuring long-term benefits of cochlear implantation in a patient with single-sided deafness (SSD) with respect to spatial hearing and to document improved quality of life because of reduced tinnitus. Patient A single adult male with profound right-sided sensorineural hearing loss and normal hearing in the left ear who underwent right-sided cochlear implantation. Methods The subject was evaluated at 6, 9, 12, and 18 months after implantation on speech intelligibility with specific target-masker configurations, sound localization accuracy, audiologic performance, and tinnitus handicap. Testing conditions involved the acoustic (NH) ear only, the cochlear implant (CI) ear (acoustic ear plugged), and the bilateral condition (CI+NH). Measures of spatial hearing included speech intelligibility improvement because of spatial release from masking (SRM) and sound localization. In addition, traditional measures known as “head shadow,” “binaural squelch,” and “binaural summation” were evaluated. Results The best indicator for improved speech intelligibility was SRM, in which both ears are activated, but the relative locations of target and masker(s) are manipulated. Measures that compare performance with a single ear to performance using bilateral auditory input indicated evidence of the ability to integrate inputs across the ears, possibly reflecting early binaural processing, with 12 months of bilateral input. Sound localization accuracy improved with addition of the implant, and a large improvement with respect to tinnitus handicap was observed. Conclusion Cochlear implantation resulted in improved sound localization accuracy when compared with performance using only the NH ear, and reduced tinnitus handicap was observed with use of the implant. The use of SRM addresses some of the current limitations of traditional measures of spatial and binaural hearing, as spatial cues related to target and maskers are manipulated, rather than the ear(s) tested. Sound testing methods and calculations described here are therefore recommended for assessing performance of a larger sample size of individuals with SSD who receive a CI.
Trends in hearing | 2014
Heath G. Jones; Alan Kan; Ruth Y. Litovsky
Bilateral cochlear-implant (BiCI) users are less accurate at localizing free-field (FF) sound sources than normal-hearing (NH) listeners. This performance gap is not well understood but is likely due to a combination of compromises in acoustic signal representation by the two independent speech processors and neural degradation of auditory pathways associated with a patient’s hearing loss. To exclusively investigate the effect of CI speech encoding on horizontal-plane sound localization, the present study measured sound localization performance in NH subjects listening to vocoder processed and nonvocoded virtual acoustic space (VAS) stimuli. Various aspects of BiCI stimulation such as independently functioning devices, variable across-ear channel selection, and pulsatile stimulation were simulated using uncorrelated noise (Nu), correlated noise (N0), or Gaussian-enveloped tone (GET) carriers during vocoder processing. Additionally, FF sound localization in BiCI users was measured in the same testing environment for comparison. Distinct response patterns across azimuthal locations were evident for both listener groups and were analyzed using a multilevel regression analysis. Simulated implant speech encoding, regardless of carrier, was detrimental to NH localization and the GET vocoder best simulated BiCI FF performance in NH listeners. Overall, the detrimental effect of vocoder processing on NH performance suggests that sound localization deficits may persist even for BiCI patients who have minimal neural degradation associated with their hearing loss and indicates that CI speech encoding plays a significant role in the sound localization deficits experienced by BiCI users.
Ear and Hearing | 2015
Matthew B. Fitzgerald; Alan Kan; Matthew J. Goupell
Objective: To determine whether bilateral loudness balancing during mapping of bilateral cochlear implants (CIs) produces fused, punctate, and centered auditory images that facilitate lateralization with stimulation on single-electrode pairs. Design: Adopting procedures similar to those that are practiced clinically, direct stimulation was used to obtain most-comfortable levels (C levels) in recipients of bilateral CIs. Three pairs of electrodes, located in the base, middle, and apex of the electrode array, were tested. These electrode pairs were loudness-balanced by playing right-left electrode pairs sequentially. In experiment 1, the authors measured the location, number, and compactness of auditory images in 11 participants in a subjective fusion experiment. In experiment 2, the authors measured the location and number of the auditory images while imposing a range of interaural level differences (ILDs) in 13 participants in a lateralization experiment. Six of these participants repeated the mapping process and lateralization experiment over three separate days to determine the variability in the procedure. Results: In approximately 80% of instances, bilateral loudness balancing was achieved from relatively small adjustments to the C levels (⩽3 clinical current units). More important, however, was the observation that in 4 of 11 participants, simultaneous bilateral stimulation regularly elicited percepts that were not fused into a single auditory object. Across all participants, approximately 23% of percepts were not perceived as fused; this contrasts with the 1 to 2% incidence of diplacusis observed with normal-hearing individuals. In addition to the unfused images, the perceived location was often offset from the physical ILD. On the whole, only 45% of percepts presented with an ILD of 0 clinical current units were perceived as fused and heard in the center of the head. Taken together, these results suggest that distortions to the spatial map remain common in bilateral CI recipients even after careful bilateral loudness balancing. Conclusions: The primary conclusion from these experiments is that, even after bilateral loudness balancing, bilateral CI recipients still regularly perceive stimuli that are unfused, offset from the assumed zero ILD, or both. Thus, while current clinical mapping procedures for bilateral CIs are sufficient to enable many of the benefits of bilateral hearing, they may not elicit percepts that are thought to be optimal for sound-source location. As a result, in the absence of new developments in signal processing for CIs, new mapping procedures may need to be developed for bilateral CI recipients to maximize the benefits of bilateral hearing.
Frontiers in Systems Neuroscience | 2014
Antje Ihlefeld; Alan Kan; Ruth Y. Litovsky
The current study examined how cochlear implant (CI) listeners combine temporally interleaved envelope-ITD information across two sites of stimulation. When two cochlear sites jointly transmit ITD information, one possibility is that CI listeners can extract the most reliable ITD cues available. As a result, ITD sensitivity would be sustained or enhanced compared to single-site stimulation. Alternatively, mutual interference across multiple sites of ITD stimulation could worsen dual-site performance compared to listening to the better of two electrode pairs. Two experiments used direct stimulation to examine how CI users can integrate ITDs across two pairs of electrodes. Experiment 1 tested ITD discrimination for two stimulation sites using 100-Hz sinusoidally modulated 1000-pps-carrier pulse trains. Experiment 2 used the same stimuli ramped with 100 ms windows, as a control condition with minimized onset cues. For all stimuli, performance improved monotonically with increasing modulation depth. Results show that when CI listeners are stimulated with electrode pairs at two cochlear sites, sensitivity to ITDs was similar to that seen when only the electrode pair with better sensitivity was activated. None of the listeners showed a decrement in performance from the worse electrode pair. This could be achieved either by listening to the better electrode pair or by truly integrating the information across cochlear sites.