Alan Kemp
National Health Laboratory Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan Kemp.
Veterinary Research | 2010
Michel Pépin; Michèle Bouloy; Brian H. Bird; Alan Kemp; Janusz T. Paweska
Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus.
PLOS Pathogens | 2009
Jonathan S. Towner; Brian R. Amman; Tara K. Sealy; Serena A. Carroll; James A. Comer; Alan Kemp; Robert Swanepoel; Christopher D. Paddock; Stephen Balinandi; Marina L. Khristova; Pierre Formenty; César G. Albariño; David Miller; Zachary Reed; John Kayiwa; James N. Mills; Deborah Cannon; Patricia W. Greer; Emmanuel Byaruhanga; Eileen C. Farnon; Patrick Atimnedi; Samuel Okware; Edward Katongole-Mbidde; Robert Downing; Jordan W. Tappero; Sherif R. Zaki; Thomas G. Ksiazek; Stuart T. Nichol; Pierre E. Rollin
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.
PLOS Pathogens | 2012
Brian R. Amman; Serena A. Carroll; Zachary Reed; Tara K. Sealy; Stephen Balinandi; Robert Swanepoel; Alan Kemp; Bobbie R. Erickson; James A. Comer; Shelley Campbell; Deborah Cannon; Marina L. Khristova; Patrick Atimnedi; Christopher D. Paddock; Rebekah J. Kent Crockett; Timothy D. Flietstra; Kelly L. Warfield; Robert Unfer; Edward Katongole-Mbidde; Robert Downing; Jordan W. Tappero; Sherif R. Zaki; Pierre E. Rollin; Thomas G. Ksiazek; Stuart T. Nichol; Jonathan S. Towner
Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.
Emerging Infectious Diseases | 2011
Antoinette A. Grobbelaar; Jacqueline Weyer; Patricia A. Leman; Alan Kemp; Janusz T. Paweska; Robert Swanepoel
Large-scale vaccination of animals might have influenced virus evolution.
Emerging Infectious Diseases | 2007
Marcel A. Müller; Janusz T. Paweska; Patricia A. Leman; Christian Drosten; Klaus Grywna; Alan Kemp; Leo Braack; Karen Sonnenberg; Matthias Niedrig; Robert Swanepoel
Asian bats have been identified as potential reservoir hosts of coronaviruses associated with severe acute respiratory syndrome (SARS-CoV). We detected antibody reactive with SARS-CoV antigen in 47 (6.7%) of 705 bat serum specimens comprising 26 species collected in Africa; thus, African bats may harbor agents related to putative group 4 CoV.
PLOS ONE | 2012
Janusz T. Paweska; Petrus Jansen van Vuren; Justin Masumu; Patricia A. Leman; Antoinette A. Grobbelaar; Monica Birkhead; Sarah J. Clift; Robert Swanepoel; Alan Kemp
The Egyptian fruit bat, Rousettus aegyptiacus, is currently regarded as a potential reservoir host for Marburg virus (MARV). However, the modes of transmission, the level of viral replication, tissue tropism and viral shedding pattern remains to be described. Captive-bred R. aegyptiacus, including adult males, females and pups were exposed to MARV by different inoculation routes. Blood, tissues, feces and urine from 9 bats inoculated by combination of nasal and oral routes were all negative for the virus and ELISA IgG antibody could not be demonstrated for up to 21 days post inoculation (p.i.). In 21 bats inoculated by a combination of intraperitoneal/subcutaneous route, viremia and the presence of MARV in different tissues was detected on days 2–9 p.i., and IgG antibody on days 9–21 p.i. In 3 bats inoculated subcutaneously, viremia was detected on days 5 and 8 (termination of experiment), with virus isolation from different organs. MARV could not be detected in urine, feces or oral swabs in any of the 3 experimental groups. However, it was detected in tissues which might contribute to horizontal or vertical transmission, e.g. lung, intestines, kidney, bladder, salivary glands, and female reproductive tract. Viremia lasting at least 5 days could also facilitate MARV mechanical transmission by blood sucking arthropods and infections of susceptible vertebrate hosts by direct contact with infected blood. All bats were clinically normal and no gross pathology was identified on post mortem examination. This work confirms the susceptibility of R. aegyptiacus to infection with MARV irrespective of sex and age and contributes to establishing a bat-filovirus experimental model. Further studies are required to uncover the mode of MARV transmission, and to investigate the putative role of R. aegyptiacus as a reservoir host.
PLOS Neglected Tropical Diseases | 2012
R. Métras; Thibaud Porphyre; Dirk U. Pfeiffer; Alan Kemp; Peter N. Thompson; Lisa M. Collins; Richard G. White
Background Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950–1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008–11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission. Methodology/Principal Findings A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km). Conclusions/Significance The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread.
Emerging Infectious Diseases | 2013
Brett N. Archer; Juno Thomas; Jacqueline Weyer; Ayanda Cengimbo; Dadja E. Landoh; Charlene Jacobs; Sindile Ntuli; Motshabi Modise; Moshe Mathonsi; Morton S. Mashishi; Patricia A. Leman; Chantel le Roux; Petrus Jansen van Vuren; Alan Kemp; Janusz T. Paweska; Lucille Blumberg
Rift Valley fever continues to pose a notable public health threat to humans.
The Journal of Infectious Diseases | 2015
Janusz T. Paweska; Petrus Jansen van Vuren; Karla A. Fenton; Kerry Graves; Antoinette A. Grobbelaar; Naazneen Moolla; Patricia A. Leman; Jacqueline Weyer; Nadia Storm; Stewart D. McCulloch; Terence Peter Scott; Wanda Markotter; Lieza Odendaal; Sarah J. Clift; Thomas W. Geisbert; Martin Hale; Alan Kemp
Egyptian fruit bats (Rousettus aegyptiacus) were inoculated subcutaneously (n = 22) with Marburg virus (MARV). No deaths, overt signs of morbidity, or gross lesions was identified, but microscopic pathological changes were seen in the liver of infected bats. The virus was detected in 15 different tissues and plasma but only sporadically in mucosal swab samples, urine, and fecal samples. Neither seroconversion nor viremia could be demonstrated in any of the in-contact susceptible bats (n = 14) up to 42 days after exposure to infected bats. In bats rechallenged (n = 4) on day 48 after infection, there was no viremia, and the virus could not be isolated from any of the tissues tested. This study confirmed that infection profiles are consistent with MARV replication in a reservoir host but failed to demonstrate MARV transmission through direct physical contact or indirectly via air. Bats develop strong protective immunity after infection with MARV.
Emerging Infectious Diseases | 2013
R. Métras; Marc Baguelin; W. John Edmunds; Peter N. Thompson; Alan Kemp; Dirk U. Pfeiffer; Lisa M. Collins; Richard G. White
A Rift Valley fever (RVF) epidemic affecting animals on domestic livestock farms was reported in South Africa during January–August 2010. The first cases occurred after heavy rainfall, and the virus subsequently spread countrywide. To determine the possible effect of environmental conditions and vaccination on RVF virus transmissibility, we estimated the effective reproduction number (Re) for the virus over the course of the epidemic by extending the Wallinga and Teunis algorithm with spatial information. Re reached its highest value in mid-February and fell below unity around mid-March, when vaccination coverage was 7.5%–45.7% and vector-suitable environmental conditions were maintained. The epidemic fade-out likely resulted first from the immunization of animals following natural infection or vaccination. The decline in vector-suitable environmental conditions from April onwards and further vaccination helped maintain Re below unity. Increased availability of vaccine use data would enable evaluation of the effect of RVF vaccination campaigns.