Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan L. Deino is active.

Publication


Featured researches published by Alan L. Deino.


Chemical Geology | 1998

Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating

Paul R. Renne; Carl C. Swisher; Alan L. Deino; Daniel B. Karner; Thomas L. Owens; Donald J. DePaolo

The 40Ar/39Ar dating method depends on accurate intercalibration between samples, neutron fluence monitors, and primary 40Ar/40K (or other external) standards. The 40Ar/39Ar age equation may be expressed in terms of intercalibration factors that are simple functions of the relative ages of standards, or equivalently are equal to the ratio of radiogenic to nucleogenic K-derived argon (40Ar/39ArK) values for one standard or unknown relative to another. Intercalibration factors for McClure Mountain hornblende (MMhb-1), GHC-305 biotite, GA-1550 biotite, Taylor Creek sanidine (TCs) and Alder Creek sanidine (ACs), relative to Fish Canyon sanidine (FCs), were derived from 797 analyses involving 11 separate irradiations with well-constrained neutronfluence variations. Values of the intercalibration factors are RFCsMMhb-1 = 21.4876 ± 0.0079; RFCsGA-1550 = 3.5957 ± 0.0038; RFCsTCs = 1.0112 ± 0.0010; RFCsACs = 0.04229 ± 0.00006, based on the mean and standard error of the mean resulting from four or more spatially distinct co-irradiations of FCs with the other standars. Analysis of 35 grains of GHC-305 irradiated in a single irradiation yields RFCsGHC-305 = 3.8367 ± 0.0143. Results at these levels of precision essentially eliminate intercalibration as a significant source of error in 40Ar/39Ar dating. Data for GA-1550 (76 analyses, 5 fluence values), TCs (54 analyses, 4 fluence values), FCs (380 analyses, 40 fluence values) and ACs (86 analyses, 11 fluence values) yield MSWD values showing that the between-grain dispersion of 40Ar∗/39ArK values is consistent with analytical errors alone, whereas MMhb-1 (167 analyses, 4 irradiations) and GHC-305 (34 analyses, 1 fluence value) are heterogeneous and therefore unsuitable as standards for small sample analysis. New K measurements by isotope dilution for two primary standards, GA-1550 biotite (8 analyses averaging 7.626 ± 0.016 wt%) and intralaboratory standard GHC-305 (10 analyses averaging 7.570 ± 0.011 wt%), yield values slightly lower and more consistent than previous data obtained by flame photometry, with resulting 40Ar/40K ages of 98.79 ± 0.96 Ma and 105.6 ± 0.3 Ma for GA-1550 and GHC-305, respectively. Combining these data with the intercalibration approach described herein and using GA-1550 as the primary standard (1.343 × 10−9 mol/g of 40Ar∗; [McDougall, I., Roksandic, Z., 1974. Total fusion 40Ar/39Ar ages using HIFAR reactor. J. Geol. Soc. Aust. 21, 81–89.]) yields ages of 523.1 ± 4.6 Ma for MMhb-1, 105.2 ± 1.1 Ma for GHC-305, 98.79 ± 0.96 Ma for GA-1550, 28.34 ± 0.28 Ma for TCs, 28.02 ± 0.28 for FCs, and 1.194 ± 0.012 Ma for ACs (errors are full external errors, including uncertainty in decay constants). Neglecting error in the decay constants, these ages and uncertainties are: 523.1 ± 2.6 Ma for MMhb-1, 105.2 ± 0.7 Ma for GHC-305, 98.79 ± 0.54 for GA-1550, 28.34 ± 0.16 Ma for TCs, 28.02 ± 0.16 Ma for FCs, and 1.194 ± 0.007 Ma for ACs. Using GHC-305 as the primary standard (1.428 ± 0.004 × 10−9 mol/g of 40Ar∗), ages are 525.1 ± 2.3 Ma for MMhb-1, 105.6 ± 0.3 Ma for GHC-305, 99.17 ± 0.48 Ma for GA-1550, 28.46 ± 0.15 Ma for TCs, 28.15 ± 0.14 Ma for FCs, and 1.199 ± 0.007 Ma for ACs, neglecting decay constant uncertainties. The approach described herein facilitates error propagation that allows for straightforward inclusion of uncertainties in the ages of primary standards and decay constants, without which comparison of 40Ar/39Ar dates with data from independent geochronometers is invalid. Re-examination of 40K decay constants would be fruitful for improved accuracy.


Science | 2008

Synchronizing rock clocks of Earth history.

Klaudia F. Kuiper; Alan L. Deino; F.J. Hilgen; Wout Krijgsman; Paul R. Renne; Jan R. Wijbrans

Calibration of the geological time scale is achieved by independent radioisotopic and astronomical dating, but these techniques yield discrepancies of ∼1.0% or more, limiting our ability to reconstruct Earth history. To overcome this fundamental setback, we compared astronomical and 40Ar/39Ar ages of tephras in marine deposits in Morocco to calibrate the age of Fish Canyon sanidine, the most widely used standard in 40Ar/39Ar geochronology. This calibration results in a more precise older age of 28.201 ± 0.046 million years ago (Ma) and reduces the 40Ar/39Ar methods absolute uncertainty from ∼2.5 to 0.25%. In addition, this calibration provides tight constraints for the astronomical tuning of pre-Neogene successions, resulting in a mutually consistent age of ∼65.95 Ma for the Cretaceous/Tertiary boundary.


Journal of Volcanology and Geothermal Research | 2004

The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method

Alan L. Deino; G. Orsi; Sandro de Vita; Monica Piochi

Abstract The Neapolitan Yellow Tuff (NYT) is the product of the largest known trachytic phreatoplinian eruption. It covered an area larger than 1000 km2 with an estimated volume of about 40 km3 of erupted magma. During the course of the eruption a caldera collapsed within the previously formed Campanian Ignimbrite caldera. The resulting nested structure strongly influenced the following volcanic activity in the Campi Flegrei caldera. As previous dating of the NYT does not converge toward a unique result, a new set of 40Ar/39Ar age determinations has been carried out to better constrain the age of the eruption. Two variants of the 40Ar/39Ar dating method were applied to determine the age of the NYT eruption: (1) single-crystal total fusion (SCTF), on an individual phenocryst of feldspar, and (2) laser incremental heating (LIH), on bulk aliquots of feldspar phenocrysts. The results of the SCTF analyses show that the overall sample weighted mean age, derived from the conventional age calculation, is 15.6±0.8 ka. A weighted mean of the isochron age is 15.3±1.2 ka (2σ), and has been assumed as the best indicator of age to be derived from the SCTF analyses. The LIH analyses results show that plateau ages vary from 15.4±0.5 to 14.5±0.5 ka. The overall weighted mean age of the isochron results is 14.9±0.4 ka (2σ). This result has been assumed as the reference age for the NYT eruption, and agrees with the SCTF age. The new age obtained for the NYT deposits is of great relevance for the understanding of the evolution and the present state of the Campi Flegrei caldera and collocates the NYT in a crucial stratigraphical position to date the climatic oscillations that occurred between the Late Glacial and the Holocene.


Geology | 1994

Intercalibration of astronomical and radioisotopic time

Paul R. Renne; Alan L. Deino; Robert C. Walter; Brent D. Turrin; Carl C. Swisher; Tim A. Becker; Garniss H. Curtis; Warren D. Sharp; Abdur-Rahim Jaouni

The 40Ar/39Ar radioisotopic dating technique is one of the most precise and versatile methods available for dating events in Earths history, but the accuracy of this method is limited by the accuracy with which the ages of neutron-fluence monitors (dating standards) are known. Calibrating the ages of standards by conventional means has proved difficult and contentious. The emerging astronomically calibrated geomagnetic polarity time scale (APTS) offers a means to calibrate the ages of 40Ar/39Ar dating standards that is independent of absolute isotopic abundance measurements. Seven published 40Ar/39Ar dates for polarity transitions, nominally ranging from 0.78 to 3.40 Ma, are based on the Fish Canyon sanidine standard and can be compared with APTS predictions. Solving the 40Ar/39Ar age equation for the age of the Fish Canyon sanidine that produces coincidence with the APTS age for each of these seven reversals yields mutually indistinguishable estimates ranging from 27.78 to 28.09 Ma, with an inverse variance-weighted mean of 27.95 ± 0.18 Ma. Normalized residuals are minimized at an age of 27.92 Ma, indicating the robustness of the solution.


Science | 2013

Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary

Paul R. Renne; Alan L. Deino; F.J. Hilgen; Klaudia F. Kuiper; Darren F. Mark; William S. Mitchell; Leah E. Morgan; Roland Mundil; Jan Smit

Impact Dating The large mass extinction of terrestrial and marine life—most notably, non-avian dinosaurs—occurred around 66 million years ago, at the boundary between the Cretaceous and Paleogene periods. But attributing the cause to a large asteroid impact depends on precisely dating material from the impact with indicators of ecological stress and environmental change in the rock record. Renne et al. (p. 684; see the Perspective by Pälike) acquired high-precision radiometric dates of stratigraphic layers surrounding the boundary, demonstrating that the impact occurred within 33,000 years of the mass extinction. The data also constrain the length of time in which the atmospheric carbon cycle was severely disrupted to less than 5000 years. Because the climate in the late Cretaceous was becoming unstable, the large-impact event appears to have triggered a state-shift in an already stressed global ecosystem. Radiometric dating establishes the mass extinction that killed the dinosaurs as synchronous with a large asteroid impact. [Also see Perspective by Pälike] Mass extinctions manifest in Earths geologic record were turning points in biotic evolution. We present 40Ar/39Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.


Geology | 1991

Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified

Craig A. Chesner; William I. Rose; Alan L. Deino; R. Drake; John A. Westgate

Single-grain laser-fusion {sup 40}Ar/{sup 39}Ar analyses of individual sanidine phenocrysts from the two youngest Toba (Indonesia) tuffs yield mean ages of 73{plus minus}4 and 501{plus minus}5 ka. In addition, glass shards from Toba ash deposited in Malaysia were dated at 68{plus minus}7 ka by the isothermal plateau fission-track technique. These new determinations, in conjunction with previous ages for the two oldest tuffs at Toba, establish the chronology of four eruptive events from the Toba caldera complex over the past 1.2 m.y. Ash-flow tuffs were erupted from the complex every 0.34 to 0.43 m.y., culminating with the enormous (2500-3000 km{sup 3}) Youngest Toba tuff eruption, caldera formation, and subsequent resurgence of Samosir Island. Timing of this last eruption at Toba is coincident with the early Wisconsin glacial advance. The high-precision {sup 40}Ar/{sup 39}Ar age eruption of such magnitude may provide an important marker horizon useful as a baseline for research and modeling of the worldwide climatic impact of exceptionally large explosive eruptions.


Journal of Volcanology and Geothermal Research | 1999

Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions

Lucia Pappalardo; Lucia Civetta; Massimo D'Antonio; Alan L. Deino; M. A. Di Vito; G. Orsi; Antonio Carandente; S. de Vita; Roberto Isaia; Monica Piochi

Abstract New geochronological, geochemical, and Sr-isotopic data on volcanics erupted before the Campanian Ignimbrite (CI, 37 ka) and the Neapolitan Yellow Tuff (NYT, 12 ka) caldera-forming eruptions at Campi Flegrei (CF) have allowed us to investigate the behavior and temporal evolution of the Phlegraean magmatic system. The most prominent feature of the CF magmatic system was the existence of a large, trachytic magma chamber, episodically recharged, which fed eruptions for tens of thousands years before the CI and NYT eruptions. During the pre-CI caldera activity, magmas were episodically erupted from vents located outside the present caldera structure. These magmas ranged in composition from trachyte to alkali-trachyte, with Sr-isotope ratios increasing through time, and becoming identical to that of the CI magma, at about 44 ka ago. This suggests that the Phlegraean magmatic system before the CI eruption was acting as an open system. It was being progressively replenished by new batches of magma that mixed with the resident less radiogenic, fractionating trachytic magmas and was periodically tapped. The magma chamber evolution culminated in the catastrophic eruption of the voluminous (150 km3 DRE), chemically and isotopically zoned CI trachytic magmas, and in the resultant CI caldera formation. Subsequent to the CI eruption, during a period of moderate subaereal volcanic activity of about 20 ka duration, magmas predominantly trachytic to alkali-trachytic in composition and isotopically similar to the last emitted CI magma were erupted from vents located inside the CI caldera. The temporal trend shown by Sr-isotope ratios provides evidence for a new input of alkali-trachytic magma, at ca. 15 ka, with 87 Sr / 86 Sr ratio identical to that of the alkali-trachytic magma feeding the first phase of the NYT eruption. These data testify to the arrival in a short time span of a new trachytic to alkali-trachytic magma in the system, isotopically distinct from the CI magma, that gave rise about 3 ka later to eruption of the NYT (40 km3 DRE).


Journal of Volcanology and Geothermal Research | 1999

The Agnano-Monte Spina eruption 4100 years BP in the restless / Campi Flegrei caldera Italy

S. de Vita; G. Orsi; Lucia Civetta; Antonio Carandente; Massimo D'Antonio; Alan L. Deino; T di Cesare; M. A. Di Vito; Richard V. Fisher; Roberto Isaia; E. Marotta; A Necco; Michael H. Ort; Lucia Pappalardo; Monica Piochi; J Southon

Abstract The Agnano–Monte Spina tephra (AMST), dated at 4100 years BP by 40 Ar / 39 Ar and 14 C AMS techniques, is the product of the highest-magnitude eruption in the Campi Flegrei caldera (CFc) during its last epoch of activity (4800–3800 years BP). The sequence alternates magmatic and phreatomagmatic pyroclastic-fallout, -flow and -surge beds and bedsets. Two main pumice-fallout deposits with variable easterly-to-northeasterly dispersal axes are about 10 cm thick at 42 km from the vent area. High particle concentration pyroclastic currents were confined to the caldera depression; lower concentration flows overtopped the morphological boundary of the caldera and traveled at least 15 km over the surrounding plain. The unit is subdivided into six members, named A through F in stratigraphic sequence, based upon their sedimentological characteristics. Isopachs and isopleths maps suggest a vent location in the Agnano plain. A volcano-tectonic collapse begun during the course of the eruption, took place along the faults of the northeastern sector of the resurgent block within the CFc, and generated the Agnano plain. The early erupted trachytic magma had a homogeneous alkali–trachytic composition, whereas later-erupted magma shows small-scale hetereogeneities. Trace elements and Sr-isotope compositions, indicate that two isotopically distinct magmas, one alkali–trachytic and the other trachytic, were tapped and partially mixed during the eruption. The small volume (1.2 km3 DRE) of erupted magma and the structural position of the vent suggest that the eruption was fed by a dyke intruded along a normal fault in the sector of the resurgent block under a tensional stress regime.


Earth and Planetary Science Letters | 2003

East African climate change and orbital forcing during the last 175 kyr BP

Martin H. Trauth; Alan L. Deino; Andreas Bergner; Manfred R. Strecker

Abstract Variations in the temporal and spatial distribution of solar radiation caused by orbital changes provide a partial explanation for the observed long-term fluctuations in African lake levels. The understanding of such relationships is essential for designing climate-prediction models for the tropics. Our assessment of the nature and timing of East African climate change is based on lake-level fluctuations of Lake Naivasha in the Central Kenya Rift (0°55′S 36°20′E), inferred from sediment characteristics, diatoms, authigenic mineral assemblages and 17 single-crystal 40Ar/39Ar age determinations. Assuming that these fluctuations reflect climate changes, the Lake Naivasha record demonstrates that periods of increased humidity in East Africa mainly followed maximum equatorial solar radiation in March or September. Interestingly, the most dramatic change in the Naivasha Basin occurred as early as 146 kyr BP and the highest lake level was recorded at about 139–133 kyr BP. This is consistent with other well-dated low-latitude climate records, but does not correspond to peaks in Northern Hemisphere summer insolation as the trigger for the ice-age cycles. The Naivasha record therefore provides evidence for low-latitude forcing of the ice-age climate cycles.


Journal of Geophysical Research | 1993

Tectonic controls on rift basin morphology: Evolution of the northern Malawi (Nyasa) Rift

C. J. Ebinger; Alan L. Deino; A. L. Tesha; T. Becker; U. Ring

Radiometric (K-Ar and Ar-40/Ar-39) age determinations of volcanic and volcaniclastic rocks, combined with structural, gravity, and seismic reflection data, are used to constrain the age of sedimentary strata contained within the seismically and volcanically active northern Malawi (Nyasa) rift and to characterize changes in basin and flank morphologies with time. Faulting and volcanism within the Tukuyu-Karonga basin began at approximately 8.6 Ma, when sediments were deposited in abroad, initially asymmetric lake basin bounded on its northeastern side by a border fault system with minor topographic relief. Extensions, primarily by a slip along the border fault, and subsequent regional isostatic compensation led to the development of a 5-km-deep basin bounded by broad uplifted flanks. Along the low-relief basin margin opposite border fault, younger stratigraphic sequences commonly onlap older wedge-shaped sequences, although their internal geometry is often progradational. Intrabasinal faulting, flankuplift, and basaltic and felsic volcanism from centers at the northern end of the basin became more important at about 2.5 Ma when cross-rift transfer faults developed to link the Tukuyu-Karonga basin to the Rukwa basin. Local uplift and volcanic construction at the northern end of the basin led to a southeastward shift in the basins depocenter. Sequence boundaries are commonly erosional along this low-relief (hanging wall) margin and conformable in the deep lake basin. The geometry of stratigraphic sequences and the distribution of the erosion indicate that horizontal and vertical crustal movements both across and along the length of the rift basin led to changes in levels of the lake, irrespective of paleoclimatic fluctuations.

Collaboration


Dive into the Alan L. Deino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Renne

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna K. Behrensmeyer

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Beverly Z. Saylor

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yohannes Haile-Selassie

Cleveland Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge