Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan M. Zahler is active.

Publication


Featured researches published by Alan M. Zahler.


The EMBO Journal | 1999

hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing

Massimo Caputi; Akila Mayeda; Adrian R. Krainer; Alan M. Zahler

Splicing of the human immunodeficiency virus type 1 (HIV‐1) pre‐mRNA must be inefficient to provide a pool of unspliced messages which encode viral proteins and serve as genomes for new virions. Negative cis‐regulatory elements (exonic splicing silencers or ESSs) are necessary for HIV‐1 splicing inhibition. We demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) of the A and B group are trans‐acting factors required for the function of the tat exon 2 ESS. Depletion of hnRNP A/B proteins from HeLa cell nuclear extract activates splicing of tat exon 2 pre‐mRNA substrate. Splicing inhibition is restored by addition of recombinant hnRNP A/B proteins to the depleted extract. A high‐affinity hnRNP A1‐binding sequence can substitute functionally for the ESS in tat exon 2. These results demonstrate that hnRNP A/B proteins are required for repression of HIV‐1 splicing.


The EMBO Journal | 2002

SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D

Massimo Caputi; Alan M. Zahler

A naturally arising point mutation in the env gene of HIV‐1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of the SR protein SC35 to the exon. Mutant exon 6D sequences function as a splicing enhancer when inserted into an enhancer‐dependent splicing construct. hnRNP H family proteins bind to the enhancer as well; their binding is dependent on the sequence GGGA located just downstream of the point mutation and depletion– reconstitution studies show that hnRNP H is essential for enhancer activity. A polypurine sequence located further downstream in exon 6D binds SR proteins but acts as an exonic splicing silencer. hnRNP H is required for interaction of U1 snRNP with the enhancer, independent of the point mutation. We propose that SC35 binding to the point mutation region may convert the hnRNP H–U1 snRNP complex into a splicing enhancer.


PLOS Computational Biology | 2005

Intronic Alternative Splicing Regulators Identified by Comparative Genomics in Nematodes

Jennifer Lee Kabat; Sergio Barberan-Soler; Paul McKenna; Hiram Clawson; Tracy Farrer; Alan M. Zahler

Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high- scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.


PLOS Genetics | 2005

Alternative splicing regulation during C. elegans development: splicing factors as regulated targets.

Sergio Barberan-Soler; Alan M. Zahler

Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.


Nucleic Acids Research | 2011

The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets

Nicole J. Lambert; Sam G. Gu; Alan M. Zahler

MicroRNAs control gene expression by post-transcriptional down-regulation of their target mRNAs. Complementarity between the seed region (nucleotides 2–8) of a microRNA and the 3′-UTR of its target mRNA is the key determinant in recognition. However, the structural basis of the ability of the seed region to dominate target recognition in eukaryotic argonaute complexes has not been directly demonstrated. To better understand this problem, we performed chemical probing of microRNAs held in native argonaute-containing complexes isolated from Caenorhabditis elegans. Direct probing of the RNA backbone in isolated native microRNP complexes shows that the conformation of the seed region is uniquely constrained, while the rest of the microRNA structure is conformationally flexible. Probing the Watson–Crick edges of the bases shows that bases 2–4 are largely inaccessible to solvent, while seed region bases 5–8 are readily modified; collectively our probing results suggest a model in which these bases are primed for initiating base pairing with the target mRNA. In addition, an unusual DMS reactivity with U at position 6 is observed. We propose that interaction of miRNAs with argonaute proteins pre-organizes the structure of the seed sequence for specific recognition of target mRNAs.


RNA | 2009

Global analysis of alternative splicing uncovers developmental regulation of nonsense-mediated decay in C. elegans

Sergio Barberan-Soler; Nicole J. Lambert; Alan M. Zahler

Alternative splicing coupled to nonsense-mediated decay (AS-NMD) is a mechanism for post-transcriptional regulation of gene expression. We analyzed the global effects of mutations in seven genes of the C. elegans NMD pathway on AS isoform ratios. We find that mutations in two NMD factors, smg-6 and smg-7, have weaker global effects relative to mutations in other smg genes. We did an in-depth analysis of 12 pre-mRNA splicing factor genes that are subject to AS-NMD. For four of these, changes in the ratio of alternatively spliced isoforms during development are caused by developmentally regulated inhibition of NMD, and not by changes in alternative splicing. Using sucrose gradient analysis of mRNAs undergoing translation, we find several examples of NMD-dependent enrichment of premature termination codon (PTC) isoforms in the monosome fraction. In contrast, we present evidence of two genes for which the PTC-containing isoforms are found in polysomes and have a translational profile similar to non-PTC-containing transcripts from the same gene. We propose that NMD of certain alternatively spliced isoforms is regulated, and that some stabilized NMD targets may be translated.


PLOS ONE | 2012

Mating of the Stichotrichous Ciliate Oxytricha trifallax Induces Production of a Class of 27 nt Small RNAs Derived from the Parental Macronucleus

Alan M. Zahler; Zachary T. Neeb; Athena Lin; Sol Katzman

Ciliated protozoans possess two types of nuclei; a transcriptionally silent micronucleus, which serves as the germ line nucleus, and a transcriptionally active macronucleus, which serves as the somatic nucleus. The macronucleus is derived from a new diploid micronucleus after mating, with epigenetic information contributed by the parental macronucleus serving to guide the formation of the new macronucleus. In the stichotrichous ciliate Oxytricha trifallax, the macronuclear DNA is highly processed to yield gene-sized nanochromosomes with telomeres at each end. Here we report that soon after mating of Oxytricha trifallax, abundant 27 nt small RNAs are produced that are not present prior to mating. We performed next generation sequencing of Oxytricha small RNAs from vegetative and mating cells. Using sequence comparisons between macronuclear and micronuclear versions of genes, we found that the 27 nt RNA class derives from the parental macronucleus, not the developing macronucleus. These small RNAs are produced equally from both strands of macronuclear nanochromosomes, but in a highly non-uniform distribution along the length of the nanochromosome, and with a particular depletion in the 30 nt telomere-proximal positions. This production of small RNAs from the parental macronucleus during macronuclear development stands in contrast to the mechanism of epigenetic control in the distantly related ciliate Tetrahymena. In that species, 28–29 nt scanRNAs are produced from the micronucleus and these micronuclear-derived RNAs serve as epigenetic controllers of macronuclear development. Unlike the Tetrahymena scanRNAs, the Oxytricha macronuclear-derived 27 mers are not modified by 2′O-methylation at their 3′ ends. We propose models for the role of these “27macRNAs” in macronuclear development.


Nucleic Acids Research | 2011

Co-regulation of alternative splicing by diverse splicing factors in Caenorhabditis elegans

Sergio Barberan-Soler; Pedro Medina; Jeffrey Estella; James Williams; Alan M. Zahler

Regulation of alternative splicing is controlled by pre-mRNA sequences (cis-elements) and trans-acting protein factors that bind them. The combinatorial interactions of multiple protein factors with the cis-elements surrounding a given alternative splicing event lead to an integrated splicing decision. The mechanism of multifactorial splicing regulation is poorly understood. Using a splicing-sensitive DNA microarray, we assayed 352 Caenorhabditis elegans alternative cassette exons for changes in embryonic splicing patterns between wild-type and 12 different strains carrying mutations in a splicing factor. We identified many alternative splicing events that are regulated by multiple splicing factors. Many splicing factors have the ability to behave as splicing repressors for some alternative cassette exons and as splicing activators for others. Unexpectedly, we found that the ability of a given alternative splicing factor to behave as an enhancer or repressor of a specific splicing event can change during development. Our observations that splicing factors can change their effects on a substrate during development support a model in which combinatorial effects of multiple factors, both constitutive and developmentally regulated ones, contribute to the overall splicing decision.


Wormbook | 2012

Pre-mRNA splicing and its regulation in Caenorhabditis elegans

Alan M. Zahler

Alternative splicing is a common mechanism for the generation of multiple isoforms of proteins. It can function to expand the proteome of an organism and can serve as a way to turn off gene expression after transcription. This review focuses on splicing, its regulation and the progress in this field achieved through studies in C. elegans. Recent experiments, including RNA-Seq to uncover and measure the extent of alternative splicing, comparative genomics to identify splicing regulatory elements, and the development of elegant genetic screens using fluorescent reporter constructs, have increased our understanding of the cis-acting sequences that regulate alternative splicing and the trans-acting protein factors that bind to these sequences. The topics covered in this review include constitutive splicing factors, identification of alternatively spliced genes, alternative splicing regulation and the coupling of alternative splicing to nonsense-mediated decay. The significant progress towards uncovering the alternative splicing code in this organism is discussed.


Journal of Biological Chemistry | 2009

HRP-2, the Caenorhabditis elegans Homolog of Mammalian Heterogeneous Nuclear Ribonucleoproteins Q and R, Is an Alternative Splicing Factor That Binds to UCUAUC Splicing Regulatory Elements

Jennifer Lee Kabat; Sergio Barberan-Soler; Alan M. Zahler

Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.

Collaboration


Dive into the Alan M. Zahler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sol Katzman

University of California

View shared research outputs
Top Co-Authors

Avatar

W. James Kent

University of California

View shared research outputs
Top Co-Authors

Avatar

Massimo Caputi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian R. Krainer

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

David M. Prescott

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Medina

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge