Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Mackay is active.

Publication


Featured researches published by Alan Mackay.


Cell Stem Cell | 2010

BRCA1 Basal-like Breast Cancers Originate from Luminal Epithelial Progenitors and Not from Basal Stem Cells

Gemma Molyneux; Felipe C. Geyer; Fiona-Ann Magnay; Afshan McCarthy; Howard Kendrick; Rachael Natrajan; Alan Mackay; Anita Grigoriadis; Andrew Tutt; Alan Ashworth; Js Reis-Filho; Matthew John Smalley

Breast cancers in BRCA1 mutation carriers frequently have a distinctive basal-like phenotype. It has been suggested that this results from an origin in basal breast epithelial stem cells. Here, we demonstrate that deleting Brca1 in mouse mammary epithelial luminal progenitors produces tumors that phenocopy human BRCA1 breast cancers. They also resemble the majority of sporadic basal-like breast tumors. However, directing Brca1 deficiency to basal cells generates tumors that express molecular markers of basal breast cancers but do not histologically resemble either human BRCA1 or the majority of sporadic basal-like breast tumors. These findings support a derivation of the majority of human BRCA1-associated and sporadic basal-like tumors from luminal progenitors rather than from basal stem cells. They also demonstrate that when target cells for transformation have the potential for phenotypic plasticity, tumor phenotypes may not directly reflect histogenesis. This has important implications for cancer prevention strategies.


Cancer Research | 2010

FGFR1 Amplification Drives Endocrine Therapy Resistance and Is a Therapeutic Target in Breast Cancer

Nicholas C. Turner; Alex Pearson; Rachel Sharpe; Maryou B. Lambros; Felipe C. Geyer; Maria A Lopez-Garcia; Rachael Natrajan; Caterina Marchiò; Elizabeth Iorns; Alan Mackay; Cheryl Gillett; Anita Grigoriadis; Andrew Tutt; Jorge S. Reis-Filho; Alan Ashworth

Amplification of fibroblast growth factor receptor 1 (FGFR1) occurs in approximately 10% of breast cancers and is associated with poor prognosis. However, it is uncertain whether overexpression of FGFR1 is causally linked to the poor prognosis of amplified cancers. Here, we show that FGFR1 overexpression is robustly associated with FGFR1 amplification in two independent series of breast cancers. Breast cancer cell lines with FGFR1 overexpression and amplification show enhanced ligand-dependent signaling, with increased activation of the mitogen-activated protein kinase and phosphoinositide 3-kinase-AKT signaling pathways in response to FGF2, but also show basal ligand-independent signaling, and are dependent on FGFR signaling for anchorage-independent growth. FGFR1-amplified cell lines show resistance to 4-hydroxytamoxifen, which is reversed by small interfering RNA silencing of FGFR1, suggesting that FGFR1 overexpression also promotes endocrine therapy resistance. FGFR1 signaling suppresses progesterone receptor (PR) expression in vitro, and likewise, amplified cancers are frequently PR negative, identifying a potential biomarker for FGFR1 activity. Furthermore, we show that amplified cancers have a high proliferative rate assessed by Ki67 staining and that FGFR1 amplification is found in 16% to 27% of luminal B-type breast cancers. Our data suggest that amplification and overexpression of FGFR1 may be a major contributor to poor prognosis in luminal-type breast cancers, driving anchorage-independent proliferation and endocrine therapy resistance.


Lancet Oncology | 2010

Breast cancer molecular profiling with single sample predictors: a retrospective analysis

Britta Weigelt; Alan Mackay; Roger A'Hern; Rachael Natrajan; David Sp Tan; Mitch Dowsett; Alan Ashworth; Jorge S. Reis-Filho

BACKGROUND Microarray expression profiling classifies breast cancer into five molecular subtypes: luminal A, luminal B, basal-like, HER2, and normal breast-like. Three microarray-based single sample predictors (SSPs) have been used to define molecular classification of individual samples. We aimed to establish agreement between these SSPs for identification of breast cancer molecular subtypes. METHODS Previously described microarray-based SSPs were applied to one in-house (n=53) and three publicly available (n=779) breast cancer datasets. Agreement was analysed between SSPs for the whole classification system and for the five molecular subtypes individually in each cohort. FINDINGS Fair-to-substantial agreement between every pair of SSPs in each cohort was recorded (kappa=0.238-0.740). Of the five molecular subtypes, only basal-like cancers consistently showed almost-perfect agreement (kappa>0.812). The proportion of cases classified as basal-like in each cohort was consistent irrespective of the SSP used; however, the proportion of each remaining molecular subtype varied substantially. Assignment of individual cases to luminal A, luminal B, HER2, and normal breast-like subtypes was dependent on the SSP used. The significance of associations with outcome of each molecular subtype, other than basal-like and luminal A, varied depending on SSP used. However, different SSPs produced broadly similar survival curves. INTERPRETATION Although every SSP identifies molecular subtypes with similar survival, they do not reliably assign the same patients to the same molecular subtypes. For molecular subtype classification to be incorporated into routine clinical practice and treatment decision making, stringent standardisation of methodologies and definitions for identification of breast cancer molecular subtypes is needed. FUNDING Breakthrough Breast Cancer, Cancer Research UK.


Oncogene | 2010

Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets

Nicholas C. Turner; Mb Lambros; Hugo M. Horlings; Alex Pearson; Rachel Sharpe; Rachael Natrajan; Felipe C. Geyer; M. van Kouwenhove; Bas Kreike; Alan Mackay; Alan Ashworth; M.J. van de Vijver; Js Reis-Filho

Triple negative breast cancers (TNBCs) have a relatively poor prognosis and cannot be effectively treated with current targeted therapies. We searched for genes that have the potential to be therapeutic targets by identifying genes consistently overexpressed when amplified. Fifty-six TNBCs were subjected to high-resolution microarray-based comparative genomic hybridization (aCGH), of which 24 were subjected to genome-wide gene expression analysis. TNBCs were genetically heterogeneous; no individual focal amplification was present at high frequency, although 78.6% of TNBCs harboured at least one focal amplification. Integration of aCGH and expression data revealed 40 genes significantly overexpressed when amplified, including the known oncogenes and potential therapeutic targets, FGFR2 (10q26.3), BUB3 (10q26.3), RAB20 (13q34), PKN1 (19p13.12) and NOTCH3 (19p13.12). We identified two TNBC cell lines with FGFR2 amplification, which both had constitutive activation of FGFR2. Amplified cell lines were highly sensitive to FGFR inhibitor PD173074, and to RNAi silencing of FGFR2. Treatment with PD173074 induced apoptosis resulting partly from inhibition of PI3K-AKT signalling. Independent validation using publicly available aCGH data sets revealed FGFR2 gene was amplified in 4% (6/165) of TNBC, but not in other subtypes (0/214, P=0.0065). Our analysis demonstrates that TNBCs are heterogeneous tumours with amplifications of FGFR2 in a subgroup of tumours.


Nature Genetics | 2014

Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations

Pawel Buczkowicz; Christine M. Hoeman; Patricia Rakopoulos; Sanja Pajovic; Louis Letourneau; Misko Dzamba; Andrew Morrison; Peter W. Lewis; Eric Bouffet; Ute Bartels; Jennifer Zuccaro; Sameer Agnihotri; Scott Ryall; Mark Barszczyk; Yevgen Chornenkyy; Mathieu Bourgey; Guillaume Bourque; Alexandre Montpetit; Francisco Cordero; Pedro Castelo-Branco; Joshua Mangerel; Uri Tabori; King Ching Ho; Annie Huang; Kathryn R. Taylor; Alan Mackay; Javad Nazarian; Jason Fangusaro; Matthias A. Karajannis; David Zagzag

Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer.


Clinical Cancer Research | 2006

FGFR1 Emerges as a Potential Therapeutic Target for Lobular Breast Carcinomas

Jorge S. Reis-Filho; Peter T. Simpson; Nicholas C. Turner; Maryou Ballo Lambros; Chris Jones; Alan Mackay; Anita Grigoriadis; David Sarrió; Kay Savage; Tim Dexter; Marjan Iravani; Kerry Fenwick; Barbara L. Weber; David Hardisson; Fernando Schmitt; José Palacios; Sunil R. Lakhani; Alan Ashworth

Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors. The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1q and losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134. Inhibition of FGFR1 expression using small interfering RNA or a small-molecule chemical inhibitor showed that FGFR1 signaling contributes to the survival of MDA-MB-134 cells. Conclusions: Our findings suggest that receptor FGFR1 inhibitors may be useful as therapeutics in a subset of CLCs.


Cancer Research | 2004

Expression Profiling of Purified Normal Human Luminal and Myoepithelial Breast Cells Identification of Novel Prognostic Markers for Breast Cancer

Chris Jones; Alan Mackay; Anita Grigoriadis; Cossu A; Js Reis-Filho; Laura G. Fulford; Tim Dexter; Susan Davies; K Bulmer; Ford E; Suzanne Parry; M Budroni; Palmieri G; Neville Am; Michael J. O'Hare; Lakhani

The normal duct-lobular system of the breast is lined by two epithelial cell types, inner luminal secretory cells and outer contractile myoepithelial cells. We have generated comprehensive expression profiles of the two normal cell types, using immunomagnetic cell separation and gene expression microarray analysis. The cell-type specificity was confirmed at the protein level by immunohistochemistry in normal breast tissue. New prognostic markers for survival were identified when the luminal- and myoepithelial-specific molecules were evaluated on breast tumor tissue microarrays. Nuclear expression of luminal epithelial marker galectin 3 correlated with a shorter overall survival in these patients, and the expression of SPARC (osteonectin), a myoepithelial marker, was an independent marker of poor prognosis in breast cancers as a whole. These data provide a framework for the interpretation of breast cancer molecular profiling experiments, the identification of potential new diagnostic markers, and development of novel indicators of prognosis.


Nature Genetics | 2014

Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma.

Kathryn R. Taylor; Alan Mackay; Nathalene Truffaux; Yaron S N Butterfield; Olena Morozova; Cathy Philippe; David Castel; Catherine S. Grasso; Maria Vinci; Diana Carvalho; Angel M. Carcaboso; Carmen Torres; Ofelia Cruz; Jaume Mora; Natacha Entz-Werle; Wendy J. Ingram; Michelle Monje; Darren Hargrave; Alex N. Bullock; Stéphanie Puget; Stephen Yip; Chris Jones; Jacques Grill

Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9–12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP–TGF-β signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.


Clinical Cancer Research | 2007

Caveolin 1 Is Overexpressed and Amplified in a Subset of Basal-like and Metaplastic Breast Carcinomas: A Morphologic, Ultrastructural, Immunohistochemical, and In situ Hybridization Analysis

Kay Savage; Maryou B. Lambros; David Robertson; Robin L. Jones; Chris Jones; Alan Mackay; Michelle James; Jason L. Hornick; Emílio Marcelo Pereira; Fernanda Milanezi; Christopher D. M. Fletcher; Fernando Schmitt; Alan Ashworth; Jorge S. Reis-Filho

Purpose: The distribution and significance of caveolin 1 (CAV1) expression in different breast cell types and role in breast carcinogenesis remain poorly understood. Both tumor-suppressive and oncogenic roles have been proposed for this protein. The aims of this study were to characterize the distribution of CAV1 in normal breast, benign breast lesions, breast cancer precursors, and metaplastic breast carcinomas; to assess the prognostic significance of CAV1 expression in invasive breast carcinomas; and to define whether CAV1 gene amplification is the underlying genetic mechanism driving CAV1 overexpression in breast carcinomas. Experimental Design: CAV1 distribution in frozen and paraffin-embedded whole tissue sections of normal breast was evaluated using immunohistochemistry, immunofluorescence, and immunoelectron microscopy. CAV1 expression was immunohistochemically analyzed in benign lesions, breast cancer precursors, and metaplastic breast carcinomas and in a cohort of 245 invasive breast carcinomas from patients treated with surgery followed by anthracycline-based chemotherapy. In 25 cases, CAV1 gene amplification was assessed by chromogenic in situ hybridization. Results: In normal breast, CAV1 was expressed in myoepithelial cells, endothelial cells, and a subset of fibroblasts. Luminal epithelial cells showed negligible staining. CAV1 was expressed in 90% of 39 metaplastic breast carcinomas and in 9.4% of 245 invasive breast cancers. In the later cohort, CAV1 expression was significantly associated with ‘basal-like’ immunophenotype and with shorter disease-free and overall survival on univariate analysis. CAV1 gene amplification was found in 13% of cases with strong CAV1 expression. Conclusions: The concurrent CAV1 amplification and overexpression call into question its tumor-suppressive effects in basal-like breast carcinomas.


Modern Pathology | 2011

|[beta]|-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation

Felipe C. Geyer; Magali Lacroix-Triki; Kay Savage; Monica Arnedos; Maryou B. Lambros; Alan Mackay; Rachael Natrajan; Jorge S. Reis-Filho

Aberrant β-catenin expression as determined by assessment of its subcellular localization constitutes a surrogate marker of Wnt signalling pathway activation and has been reported in a subset of breast cancers. The association of β-catenin/Wnt pathway activation with clinical outcome and the mechanisms leading to its activation in breast cancers still remain a matter of controversy. The aims of this study were to address the distribution of β-catenin expression in invasive breast cancers, the correlations between β-catenin expression and clinicopathological features and survival of breast cancer patients, and to determine whether aberrant β-catenin expression is driven by CTNNB1 (β-catenin encoding gene) activating mutations. Immunohistochemistry was performed on a tissue microarray containing 245 invasive breast carcinomas from uniformly treated patients, using two anti-β-catenin monoclonal antibodies. Selected samples were subjected to CTNNB1 exon 3 mutation analysis by direct gene sequencing. A good correlation between the two β-catenin antibodies was observed (Spearmans r >0.62, P<0.001). Respectively, 31 and 11% of the cases displayed lack/reduction of β-catenin membranous expression and nuclear accumulation. Complete lack of β-catenin expression was significantly associated with invasive lobular carcinoma histological type. Subgroup analysis of non-lobular cancers or non-lobular grade 3 carcinomas revealed that lack/reduction of β-catenin membranous expression and/or nuclear accumulation were significantly associated with oestrogen receptor negativity, absence of HER2 gene amplification and overexpression, lack/reduction of E-cadherin expression and tumours of triple-negative and basal-like phenotype. Univariate survival analysis revealed a significant association between β-catenin nuclear expression and shorter metastasis-free and overall survival in the whole cohort; however, β-catenin nuclear expression was not an independent predictor of outcome in multivariate analysis. No CTNNB1 mutations were identified in the 28 selected breast carcinomas analysed. In conclusion, β-catenin/Wnt pathway activation is preferentially found in triple-negative/basal-like breast carcinomas, is associated with poor clinical outcome and is unlikely to be driven by CTNNB1 mutations in breast cancer.

Collaboration


Dive into the Alan Mackay's collaboration.

Top Co-Authors

Avatar

Alan Ashworth

University of California

View shared research outputs
Top Co-Authors

Avatar

Jorge S. Reis-Filho

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chris Jones

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Rachael Natrajan

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kerry Fenwick

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Maryou B. Lambros

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Lord

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Js Reis-Filho

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Felipe C. Geyer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Britta Weigelt

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge