Alan N. Stockton
University of Hawaii at Manoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan N. Stockton.
Nature | 2011
Weidong Li; Joshua S. Bloom; Philipp Podsiadlowski; Adam A. Miller; S. Bradley Cenko; Saurabh W. Jha; Mark Sullivan; D. Andrew Howell; Peter E. Nugent; Nathaniel R. Butler; Eran O. Ofek; Mansi M. Kasliwal; Joseph W. Richards; Alan N. Stockton; Hsin-Yi Shih; Lars Bildsten; Michael M. Shara; Joanne Bibby; Alexei V. Filippenko; Mohan Ganeshalingam; Jeffrey M. Silverman; S. R. Kulkarni; Nicholas M. Law; Dovi Poznanski; Robert Michael Quimby; Curtis McCully; Brandon Patel; K. Maguire; Ken J. Shen
Weidong Li1, Joshua S. Bloom1, Philipp Podsiadlowski2, Adam A. Miller1, S. Bradley Cenko1, Saurabh W. Jha3, Mark Sullivan2, D. Andrew Howell4,5, Peter E. Nugent6,1, Nathaniel R. Butler7, Eran O. Ofek8,9, Mansi M. Kasliwal10, Joseph W. Richards1,11, Alan Stockton12, Hsin-Yi Shih12, Lars Bildsten5,13, Michael M. Shara14, Joanne Bibby14, Alexei V. Filippenko1, Mohan Ganeshalingam1, Jeffrey M. Silverman1, S. R. Kulkarni8, Nicholas M. Law15, Dovi Poznanski16, Robert M. Quimby8, Curtis McCully3, Brandon Patel3, & Kate Maguire2Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10–100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.
The Astrophysical Journal | 2012
Ryan J. Foley; Peter J. Challis; A. V. Filippenko; Mohan Ganeshalingam; Wayne B. Landsman; Weidong Li; G. H. Marion; Jeffrey M. Silverman; Rachael L. Beaton; Vardha N. Bennert; S. B. Cenko; M. Childress; Puragra Guhathakurta; Linhua Jiang; Jason S. Kalirai; Robert P. Kirshner; Alan N. Stockton; Erik J. Tollerud; Jozsef Vinko; J. C. Wheeler; Jong Hak Woo
Supernova (SN) 2009ig was discovered 17 hours after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost supernovae for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of a SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta — the ejecta velocity measured in our earliest spectra (v � 23,000 kms −1 for Si II �6355) is the highest yet measured in a SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13± 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all Type Ia supernovae at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe. Subject headings: supernovae — general; supernovae — individual (SN 2009ig)
The Astrophysical Journal | 2011
Ryan Chornock; Alexei V. Filippenko; Weidong Li; G. H. Marion; Ryan J. Foley; Maryam Modjaz; Marc Rafelski; George D. Becker; W. H. de Vries; Peter Marcus Garnavich; Regina A. Jorgenson; David K. Lynch; A. L. Malec; Edward C. Moran; Michael T. Murphy; Richard J. Rudy; Ray W. Russell; Jeffrey M. Silverman; Thea N. Steele; Alan N. Stockton; Arthur M. Wolfe; Charles E. Woodward
Supernova (SN) 2008ax in NGC 4490 was discovered within hours after shock breakout, presenting the rare opportunity to study a core-collapse SN beginning with the initial envelope-cooling phase immediately following shock breakout. We present an extensive sequence of optical and near-infrared spectra, as well as three epochs of optical spectropolarimetry. Our initial spectra, taken two days after shock breakout, are dominated by hydrogen Balmer lines at high velocity. However, by maximum light, He I lines dominated the optical and near-infrared spectra, which closely resembled those of normal Type Ib supernovae (SNe Ib) such as SN 1999ex. This spectroscopic transition defines Type IIb SNe, but the strong similarity of SN 2008ax to normal SNe Ib beginning near maximum light, including an absorption feature near 6270 A due to Hα at high velocities, suggests that many objects classified as SNe Ib in the literature may have ejected similar amounts of hydrogen as SN 2008ax, roughly a few × 0.01 M ☉. Only the unusually early discovery of SN 2008ax allowed us to observe the spectroscopic signatures of the hydrogen-rich outer ejecta. Early-time spectropolarimetry (six and nine days after shock breakout) revealed strong line polarization modulations of 3.4% across Hα, indicating the presence of large asphericities in the outer ejecta and possibly that the spectrum of SN 2008ax could be dependent on the viewing angle. After removal of interstellar polarization, the continuum shares a common polarization angle with the hydrogen, helium, and oxygen lines, while the calcium and iron absorptions are oriented at different angles. This is clear evidence of deviations from axisymmetry even in the outer ejecta. Intrinsic continuum polarization of 0.64% only nine days after shock breakout shows that the outer layers of the ejecta were quite aspherical. A single epoch of late-time spectropolarimetry as well as the shapes of the nebular line profiles demonstrate that asphericities extended from the outermost layers all the way down to the center of this core-collapse SN. SN 2008ax may in some ways be an extragalactic analog of the explosion giving rise to Cassiopeia A, which has recently been determined to be a remnant of an SN IIb.
Advanced Technology Optical Telescopes IV | 1990
Claude A. Roddier; Francois J. Roddier; Alan N. Stockton; Andrew J. Pickles; Nicolas Roddier
Results recently obtained for the use of the curvature-sensing method as a substitute for slope sensing in optical wavefront reconstruction, using long-exposure CCD images of the beam cross-section on either side of the telescope focal plane. A program based on the solution to the Poisson equation is then applied in order to reconstruct the wavefront. Relative to the existing Hartmann sensing methods, curvature-sensing yields sensitivity comparable to that of the Shack-Hartmann test. Additional optics and reference plane-based calibration are obviated. Tests of the new method on an 88-inch Ritchey-Chretien telescope have yielded a map of residual wavefront errors as a solution of the Poisson equation.
Proceedings of the International Astronomical Union | 2007
Nicola Bennert; Gabriela Canalizo; Bruno Jungwiert; Alan N. Stockton; Francois Schweizer; Chien Peng; Mark Lacy
We present very deep HST/ACS images of five QSO host galaxies, classified as undisturbed ellipticals in earlier studies. For four of the five objects, our images reveal strong signs of interaction such as tidal tails, shells, and other fine structure, suggesting that a large fraction of QSO host galaxies may have experienced a relatively recent merger event. Our preliminary results for a control sample of inactive elliptical galaxies do not reveal comparable fine structure.
arXiv: Astrophysics | 2006
David L. Block; Iv̂anio Puerari; Giovanni G. Fazio; Alan N. Stockton; Gabriela Canalizo; Kenneth C. Freeman; T. H. Jarrett; Francoise Combes; Robert Groess; Guy Worthey; Robert D. Gehrz; Charles E. Woodward; Elisha F. Polomski
The Triangulum Spiral Galaxy Messier 33 offers unique insights into the building of a galactic disk. We identify spectacular arcs of intermediate age (0.6 Gyr − 2 Gyr) stars in the low-metallicity outer disk. The northern arc spans ~120 degrees in azimuth and up to 5 arcmin in width. The arcs are located 2-3 disk scale lengths from the galaxy centre (where 1 disk scale length is equivalent to 0.1 degrees in the V-band) and lie precisely where there is a warp in the HI profile of M33. Warps and infall are inextricably linked (Binney, 1992). We present spectroscopy of candidate stars in the outer northern arc, secured using the Keck I telescope in Hawaii. The target stars have estimated visual magnitudes as faint as V~ 25m. Absorption bands of CN are seen in all spectra reported in this review talk, confirming their carbon star status. Also presented are PAH emissivity radial profiles generated from IRAC observations of M33 using the Spitzer Space Telescope. A dramatic change of phase in the m = 2 Fourier component is detected at the domain of the arcs. M33 serves as an excellent example how the disks of spiral galaxies in our Universe are built: as dynamically open systems, growing from the inward, outward.
Astronomical Telescopes and Instrumentation | 1998
Donald L. Mickey; Klaus-Werner Hodapp; Alan N. Stockton; Gerard A. Luppino
We are developing a high-resolution cross-dispersed echelle spectrograph for installation at one of the coude foci of the new AEOS 3.67 meter telescope, operated by the Air Force Space Command on Haleakala, Maui, Hawaii. The spectrograph will consist of two major subsystems, an optical arm for the wavelength range 0.5-1.0 microns and a SWIR arm for the range 1.0-2.5 microns. The optical arm will include a mosaic 4096 by 4096 thinned CCD array, providing coverage of the wavelength range in two settings at a resolving power of 50,000. The CCD camera will be operated in frame-transfer mode. The IR arm will consist of a compact, folded cross- dispersed cryogenic echelle spectrography. The SWIR detector will be a 2048 by 2048 HgCdTe array, based on the existing HAWAII 1024 by 1024 devices. The large-format detector will permit coverage of the entire J or H band in a single grating setting with a resolving power of 60,000, and the K band in two settings. The high resolution, coupled with careful attention to scattering and stray light in the optical system, will permit exploitation of the low sky background between the strong OH airflow lines. Adequate order separation will be maintained to permit work on moderately extended objects while still retaining sky subtraction capability. The spectrography is expected to be available for use in early 2000.
Archive | 2011
Elizabeth J. McGrath; Alan N. Stockton
Archive | 2010
Mark Hancock; Gabriela Canalizo; Vardha N. Bennert; Bruno Jungwiert; Mark D. Lacy; Chien Y. Peng; Francois Schweizer; Alan N. Stockton
Archive | 2009
Elizabeth J. McGrath; Alan N. Stockton