Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan P. Boss is active.

Publication


Featured researches published by Alan P. Boss.


Science | 2010

Kepler Planet-Detection Mission: Introduction and First Results

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; John C. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Andrea K. Dupree; Thomas Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; Y. Kondo; David W. Latham; Geoffrey W. Marcy; Soren Meibom; Hans Kjeldsen; Jack J. Lissauer; David G. Monet; David R. Morrison; Dimitar D. Sasselov; Jill Tarter; Alan P. Boss; D. E. Brownlee

Detecting Distant Planets More than 400 planets have been detected outside the solar system, most of which have masses similar to that of the gas giant planet, Jupiter. Borucki et al. (p. 977, published online 7 January) summarize the planetary findings derived from the first six weeks of observations with the Kepler mission whose objective is to search for and determine the frequency of Earth-like planets in the habitable zones of other stars. The results include the detection of five new exoplanets, which confirm the existence of planets with densities substantially lower than those predicted for gas giant planets. Initial observations confirm the existence of planets with densities lower than those predicted for gas giant planets. The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.


The Astrophysical Journal | 2011

Characteristics of planetary candidates observed by Kepler II : Analysis of the first four months of data

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Stephen T. Bryson; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Dimitar D. Sasselov; Alan P. Boss; David Charbonneau; David R. Ciardi; Laurance R. Doyle; Andrea K. Dupree; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman

On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R_p < 1.25 R_⊕), 288 super-Earth-size (1.25 R_⊕ ≤ R_p < 2 R_⊕), 662 Neptune-size (2 R_⊕ ≤ R_p < 6 R_⊕), 165 Jupiter-size (6 R_⊕ ≤ R_p < 15 R_⊕), and 19 up to twice the size of Jupiter (15 R_⊕ ≤ R_p < 22 R_⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.


Astrophysical Journal Supplement Series | 2013

Planetary Candidates Observed by Kepler III: Analysis of the First 16 Months of Data

Natalie M. Batalha; Jason F. Rowe; Stephen T. Bryson; Christopher J. Burke; Douglas A. Caldwell; Jessie L. Christiansen; Fergal Mullally; Susan E. Thompson; Timothy M. Brown; Andrea K. Dupree; Daniel C. Fabrycky; Eric B. Ford; Jonathan J. Fortney; Ronald L. Gilliland; Howard Isaacson; David W. Latham; Geoffrey W. Marcy; Samuel N. Quinn; Darin Ragozzine; Avi Shporer; William J. Borucki; David R. Ciardi; Thomas N. Gautier; Michael R. Haas; Jon M. Jenkins; David G. Koch; Jack J. Lissauer; William Rapin; Gibor Basri; Alan P. Boss

New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.


The Astrophysical Journal | 2010

Kepler Mission Design, Realized Photometric Performance, and Early Science

David G. Koch; William J. Borucki; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; Joergen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Jon M. Jenkins; Y. Kondo; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; David G. Monet; Dimitar D. Sasselov; Alan P. Boss; D. E. Brownlee; John Caldwell; Andrea K. Dupree; Steve B. Howell; Hans Kjeldsen; Soeren Meibom; David Morrison; Tobias Owen

The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.


Science | 2011

Kepler-16: a transiting circumbinary planet.

Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prˇsa; William F. Welsh; Samuel N. Quinn; David W. Latham; Guillermo Torres; Lars A. Buchhave; Geoffrey W. Marcy; Jonathan J. Fortney; Avi Shporer; Eric B. Ford; Jack J. Lissauer; Darin Ragozzine; Michael Rucker; Natalie M. Batalha; Jon M. Jenkins; William J. Borucki; David G. Koch; Christopher K. Middour; Jennifer R. Hall; Sean McCauliff; Michael N. Fanelli; Elisa V. Quintana; Matthew J. Holman

An exoplanet has been observed, comparable in size and mass to Saturn, that orbits a pair of stars. We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.


The Astrophysical Journal | 2011

Characteristics Of Kepler Planetary Candidates Based On The First Data Set

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Alan P. Boss; Timothy M. Brown; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Andrea K. Dupree; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; Hans Kjeldsen; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; David G. Monet; Dimitar D. Sasselov; Jill Tarter; David Charbonneau; Laurance R. Doyle; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman

In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.


The Astrophysical Journal | 1998

Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation

Alan P. Boss

The discovery of the first extrasolar planets, with masses in the range of ~0.5 MJup (MJup = Jupiter mass) to ~3 MJup, demands a reevaluation of theoretical mechanisms for giant planet formation. Here we consider a long-discarded mechanism, forming giant planets through the gravitational instability of a protoplanetary disk. Radiative hydrodynamical calculations of the thermal structure of an axisymmetric protoplanetary disk with a mass of ~0.13 M☉ (inside 10 AU), orbiting a solar-mass star, predict that the outer disk may be cool enough (~100 ± 50 K) to become gravitationally unstable. This possibility is investigated here with a fully three-dimensional hydrodynamics code. Growth of significant nonaxisymmetry occurs within a few rotation periods of the outer disk and can result in the formation of several discrete, multiple-MJup clumps in <103 yr. These giant gaseous protoplanets (GGPPs) are gravitationally bound and tidally stable and so should eventually form giant planets. Modest-sized solid cores may form through dust grain growth and sedimentation prior to the centers of the GGPPs reaching planetary densities. The inner disk remains nearly axisymmetric throughout these phases, suggesting a scenario in which the formation of terrestrial planets occurs slowly through collisional accumulation in the hot inner nebula, while rapid formation of GGPPs occurs in the cooler regions of the nebula. Falling disk surface densities would restrict GGPP formation to an annulus, outside of which icy outer planets would have to form slowly through collisional accumulation. GGPP formation occurs for both locally isothermal and locally adiabatic disk thermodynamics, provided that the Toomre Q stability parameter indicates instability (Qmin ≈ 1). Low-order modes, especially m = 1 and 2, are dominant. Provided that a means can be found for inducing massive protoplanetary disks to undergo the GGPP instability (e.g., clumpy accretion of infalling gas onto a marginally stable disk), the GGPP mechanism appears to be a prompt alternative to the long-favored but protracted core accretion mechanism of giant planet formation. Observations hold the promise of deciding which of these two mechanisms is preferred by young stars.


Science | 2012

Kepler-47: A Transiting Circumbinary Multiplanet System

Jerome A. Orosz; William F. Welsh; Joshua A. Carter; Daniel C. Fabrycky; William D. Cochran; Michael Endl; Eric B. Ford; Nader Haghighipour; Phillip J. MacQueen; Tsevi Mazeh; Roberto Sanchis-Ojeda; Donald R. Short; Guillermo Torres; Eric Agol; Lars A. Buchhave; Laurance R. Doyle; Howard Isaacson; Jack J. Lissauer; Geoffrey W. Marcy; Avi Shporer; Gur Windmiller; Alan P. Boss; Bruce D. Clarke; Jonathan J. Fortney; John C. Geary; Matthew J. Holman; Daniel Huber; Jon M. Jenkins; Karen Kinemuchi; Ethan Kruse

A Pair of Planets Around a Pair of Stars Most of the planets we know about orbit a single star; however, most of the stars in our galaxy are not single. Based on data from the Kepler space telescope, Orosz et al. (p. 1511, published online 28 August) report the detection of a pair of planets orbiting a pair of stars. These two planets are the smallest of the known transiting circumbinary planets and have the shortest and longest orbital periods. The outer planet resides in the habitable zone—the “goldilocks” region where the temperatures could allow liquid water to exist. This discovery establishes that, despite the chaotic environment around a close binary star, a system of planets can form and persist. Data from the Kepler space telescope reveal two small planets orbiting a pair of two low-mass stars. We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet’s orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical “habitable zone,” where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.


The Astrophysical Journal | 2012

Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

William J. Borucki; David G. Koch; Natalie M. Batalha; Stephen T. Bryson; Jason F. Rowe; Francois Fressin; Guillermo Torres; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Dimitar D. Sasselov; Alan P. Boss; David Charbonneau; David R. Ciardi; Lisa Kaltenegger; Laurance R. Doyle; Andrea K. Dupree; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman

A search of the time-series photometry from NASAs Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 ± 0.060 M ☉ and 0.979 ± 0.020 R ☉. The depth of 492 ± 10 ppm for the three observed transits yields a radius of 2.38 ± 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3σ upper limit of 124 M ⊕, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22bs orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.


Astrobiology | 2007

A Reappraisal of The Habitability of Planets around M Dwarf Stars

Jill Tarter; Peter R. Backus; Rocco L. Mancinelli; Jonathan M. Aurnou; Dana E. Backman; Gibor Basri; Alan P. Boss; Andrew Clarke; Drake Deming; Laurance R. Doyle; Eric D. Feigelson; Friedmann Freund; David Harry Grinspoon; Robert M. Haberle; Steven A. Hauck; Martin J. Heath; Todd J. Henry; Jeffery Lee Hollingsworth; Manoj Joshi; Steven Kilston; Michael C. Liu; Eric Meikle; I. Neill Reid; Lynn J. Rothschild; John Scalo; Antigona Segura; Carol M. Tang; James M. Tiedje; Margaret Turnbull; Lucianne M. Walkowicz

Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.

Collaboration


Dive into the Alan P. Boss's collaboration.

Top Co-Authors

Avatar

Alycia J. Weinberger

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillem Anglada-Escudé

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William D. Cochran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Myhill

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Eric B. Ford

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge