Alan Prem Kumar
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan Prem Kumar.
Biochemical Pharmacology | 2012
Chern Chiuh Woo; Alan Prem Kumar; Gautam Sethi; Kwong Huat Benny Tan
Thymoquinone is an active ingredient isolated from Nigella sativa and has been investigated for its anti-oxidant, anti-inflammatory and anticancer activities in both in vitro and in vivo models since its first extraction in 1960s. Its anti-oxidant/anti-inflammatory effect has been reported in various disease models, including encephalomyelitis, diabetes, asthma and carcinogenesis. Moreover, thymoquinone could act as a free radical and superoxide radical scavenger, as well as preserving the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase and glutathione-S-transferase. The anticancer effect(s) of thymoquinone are mediated through different modes of action, including anti-proliferation, apoptosis induction, cell cycle arrest, ROS generation and anti-metastasis/anti-angiogenesis. In addition, this quinone was found to exhibit anticancer activity through the modulation of multiple molecular targets, including p53, p73, PTEN, STAT3, PPAR-γ, activation of caspases and generation of ROS. The anti-tumor effects of thymoquinone have also been investigated in tumor xenograft mice models for colon, prostate, pancreatic and lung cancer. The combination of thymoquinone and conventional chemotherapeutic drugs could produce greater therapeutic effect as well as reduce the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of thymoquinone with a focus on its molecular targets, and its possible role in the treatment of inflammatory diseases and cancer.
Biochimica et Biophysica Acta | 2014
Kodappully Sivaraman Siveen; Sakshi Sikka; Rohit Surana; Xiaoyun Dai; Jingwen Zhang; Alan Prem Kumar; B. K. H. Tan; Gautam Sethi; Anupam Bishayee
Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade.
Bioscience Reports | 2012
Gautam Sethi; Muthu K. Shanmugam; Alan Prem Kumar; Vinay Tergaonkar
Increasing evidence from epidemiological, preclinical and clinical studies suggests that dysregulated inflammatory response plays a pivotal role in a multitude of chronic ailments including cancer. The molecular mechanism(s) by which chronic inflammation drives cancer initiation and promotion include increased production of pro-inflammatory mediators, such as cytokines, chemokines, reactive oxygen intermediates, increased expression of oncogenes, COX-2 (cyclo-oxygenase-2), 5-LOX (5-lipoxygenase) and MMPs (matrix metalloproteinases), and pro-inflammatory transcription factors such as NF-κB (nuclear factor κB), STAT3 (signal transducer and activator of transcription 3), AP-1 (activator protein 1) and HIF-1α (hypoxia-inducible factor 1α) that mediate tumour cell proliferation, transformation, metastasis, survival, invasion, angiogenesis, chemoresistance and radioresistance. These inflammation-associated molecules are activated by a number of environmental and lifestyle-related factors including infectious agents, tobacco, stress, diet, obesity and alcohol, which together are thought to drive as much as 90% of all cancers. The present review will focus primarily on the role of various inflammatory intermediates responsible for tumour initiation and progression, and discuss in detail the critical link between inflammation and cancer.
Biomedical Microdevices | 2009
Han Wei Hou; Qiushi Li; Gabriel Yew Hoe Lee; Alan Prem Kumar; Choon Nam Ong; Chwee Teck Lim
Cell deformability is an important biomarker which can be used to distinguish between healthy and diseased cells. In this study, microfluidics is used to probe the biorheological behaviour of breast cancer cells in an attempt to develop a method to distinguish between non-malignant and malignant cells. A microfabricated fluidic channel design consisting of a straight channel and two reservoirs was used to study the biorheological behaviour of benign breast epithelial cells (MCF-10A) and non-metastatic tumor breast cells (MCF-7). Quantitative parameters such as entry time (time taken for the cell to squeeze into the microchannel) and transit velocity (speed of the cell flowing through the microchannel) were defined and measured from these studies. Our results demonstrated that a simple microfluidic device can be used to distinguish the difference in stiffness between benign and cancerous breast cells. This work lays the foundation for the development of potential microfluidic devices which can subsequently be used in the detection of cancer cells.
Biochemical Pharmacology | 2013
Muthu K. Shanmugam; Xiaoyun Dai; Alan Prem Kumar; B. K. H. Tan; Gautam Sethi; Anupam Bishayee
Discovery of bioactive molecules and elucidation of their molecular mechanisms open up an enormous opportunity for the development of improved therapy for different inflammatory diseases, including cancer. Triterpenoids isolated several decades ago from various medicinal plants now seem to have a prominent role in the prevention and therapy of a variety of ailments and some have already entered Phase I clinical trials. One such important and highly investigated pentacyclic triterpenoid, ursolic acid has attracted great attention of late for its potential as a chemopreventive and chemotherapeutic agent in various types of cancer. Ursolic acid has been shown to target multiple proinflammatory transcription factors, cell cycle proteins, growth factors, kinases, cytokines, chemokines, adhesion molecules, and inflammatory enzymes. These targets can potentially mediate the chemopreventive and therapeutic effects of ursolic acid by inhibiting the initiation, promotion and metastasis of cancer. This review not only summarizes the diverse molecular targets of ursolic acid, but also provides an insight into the various preclinical and clinical studies that have been performed in the last decade with this promising triterpenoid.
Biochimica et Biophysica Acta | 2013
Aruljothi Subramaniam; Muthu K. Shanmugam; Ekambaram Perumal; Feng Li; Alamelu Nachiyappan; Xiaoyun Dai; Shivananju Nanjunda Swamy; Kwang Seok Ahn; Alan Prem Kumar; B. K. H. Tan; Kam M. Hui; Gautam Sethi
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.
Molecules | 2015
Muthu K. Shanmugam; Grishma Rane; Madhu Mathi Kanchi; Frank Arfuso; Arunachalam Chinnathambi; Mohamed E. Zayed; Sulaiman Ali Alharbi; B. K. H. Tan; Alan Prem Kumar; Gautam Sethi
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Biochemical Pharmacology | 2011
Chern Chiuh Woo; Veronica M. W. Gee; Chun Wei Yap; Gautam Sethi; Alan Prem Kumar; Kwong Huat Benny Tan
Thymoquinone (TQ), an active ingredient of Nigella sativa, has been reported to exhibit anti-oxidant, anti-inflammatory and anti-tumor activities through mechanism(s) that is not fully understood. In this study, we report the anticancer effects of TQ on breast cancer cells, and its potential effect on the PPAR-γ activation pathway. We found that TQ exerted strong anti-proliferative effect in breast cancer cells and, when combined with doxorubicin and 5-fluorouracil, increased cytotoxicity. TQ was found to increase sub-G1 accumulation and annexin-V positive staining, indicating apoptotic induction. In addition, TQ activated caspases 8, 9 and 7 in a dose-dependent manner. Migration and invasive properties of MDA-MB-231 cells were also reduced in the presence of TQ. Interestingly, we report for the first time that TQ was able to increase PPAR-γ activity and down-regulate the expression of the genes for Bcl-2, Bcl-xL and survivin in breast cancer cells. More importantly, the increase in PPAR-γ activity was prevented in the presence of PPAR-γ specific inhibitor and PPAR-γ dominant negative plasmid, suggesting that TQ may act as a ligand of PPAR-γ. Also, we observed using molecular docking analysis that TQ indeed formed interactions with 7 polar residues and 6 non-polar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity. Taken together, our novel observations suggest that TQ may have potential implication in breast cancer prevention and treatment, and show for the first time that the anti-tumor effect of TQ may also be mediated through modulation of the PPAR-γ activation pathway.
Cancer Letters | 2013
Deepti Shrimali; Muthu K. Shanmugam; Alan Prem Kumar; Jingwen Zhang; B. K. H. Tan; Kwang Seok Ahn; Gautam Sethi
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal, leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer. This review summarizes reported anti-inflammatory and anti-cancer effects of emodin, and re-emphasizes its potential therapeutic role in the treatment of inflammatory diseases and cancer.
Cancer Letters | 2012
Muthu K. Shanmugam; An H. Nguyen; Alan Prem Kumar; Benny Kh Tan; Gautam Sethi
Over the last two decades, extensive research on plant-based medicinal compounds has revealed exciting and important pharmacological properties and activities of triterpenoids. Fruits, vegetables, cereals, pulses, herbs and medicinal plants are all considered to be biological sources of these triterpenoids, which have attracted great attention especially for their potent anti-inflammatory and anti-cancer activities. Published reports in the past have described the molecular mechanism(s) underlying the various biological activities of triterpenoids which range from inhibition of acute and chronic inflammation, inhibition of tumor cell proliferation, induction of apoptosis, suppression of angiogenesis and metastasis. However systematic analysis of various pharmacological properties of these important classes of compounds has not been done. In this review, we describe in detail the pre-clinical chemopreventive and therapeutic properties of selected triterpenoids that inhibit multiple intracellular signaling molecules and transcription factors involved in the initiation, progression and promotion of various cancers. Molecular targets modulated by these triterpenoids comprise, cytokines, chemokines, reactive oxygen intermediates, oncogenes, inflammatory enzymes such as COX-2, 5-LOX and MMPs, anti-apoptotic proteins, transcription factors such as NF-κB, STAT3, AP-1, CREB, and Nrf2 (nuclear factor erythroid 2-related factor) that regulate tumor cell proliferation, transformation, survival, invasion, angiogenesis, metastasis, chemoresistance and radioresistance. Finally, this review also analyzes the potential role of novel synthetic triterpenoids identified recently which mimic natural triterpenoids in physical and chemical properties and are moving rapidly from bench to bedside research.