Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan R. Noel is active.

Publication


Featured researches published by Alan R. Noel.


Antimicrobial Agents and Chemotherapy | 2013

Pharmacodynamics of Ceftaroline against Staphylococcus aureus Studied in an In Vitro Pharmacokinetic Model of Infection

Alasdair P. MacGowan; Alan R. Noel; Sharon Tomaselli; Karen E. Bowker

ABSTRACT An in vitro single-compartment dilutional pharmacokinetic model was used to study the pharmacodynamics of ceftaroline against Staphylococcus aureus (both methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA]). Mean serum free concentrations of ceftaroline (the active metabolite of the prodrug ceftaroline fosamil) dosed in humans at 600 mg every 12 h (q12h) were simulated, and activities against 12 S. aureus strains (3 MSSA strains and 9 MRSA strains, 3 of which had a vancomycin-intermediate phenotype) were determined. Ceftaroline produced 2.5- to 4.0-log10-unit reductions in viable counts by 24 h with all strains and a 0.5- to 4.0-log-unit drop in counts at 96 h. The antibacterial effect could not be related to the strain MIC across the ceftaroline MIC range from 0.12 to 2.0 μg/ml. In dose-ranging studies, the cumulative percentage of a 24-h period that the free drug concentration exceeded the MIC under steady-state pharmacokinetic conditions (fTMIC) of 24.5% ± 8.9% was associated with a 24-h bacteriostatic effect, one of 27.8% ± 9.5% was associated with a −1-log-unit drop, and one of 32.1% ± 8.1% was associated with a −2-log-unit drop. The MSSA and MRSA strains had similar fTMIC values. fTMIC values increased with increasing duration of exposure up to 96 h. Changes in ceftaroline population analysis profiles were related to fTMIC. fTMICs of <50% were associated with growth on 4× MIC recovery plates at 96 h of drug exposure. These data support the use of ceftaroline fosamil at doses of 600 mg q12h to treat S. aureus strains with MICs of ≤2 μg/ml. An fTMIC of 25 to 30% would make a suitable pharmacodynamic index target, but fTMIC values of ≥50% are needed to suppress the emergence of resistance and require clinical evaluation.


Antimicrobial Agents and Chemotherapy | 2012

Bactericidal Activity of Multiple Combinations of Tigecycline and Colistin against NDM-1-Producing Enterobacteriaceae

Mahableshwar Albur; Alan R. Noel; Karen E. Bowker; Alasdair P. MacGowan

ABSTRACT The interaction between colistin and tigecycline against eight well-characterized NDM-1-producing Enterobacteriaceae strains was studied. Time-kill methodology was employed using a 4-by-4 exposure matrix with pharmacokinetically achievable free drug peak, trough, and average 24-h serum concentrations. Colistin sulfate and methanesulfonate alone showed good early bactericidal activity, often with subsequent regrowth. Tigecycline alone had poor activity. Addition of tigecycline to colistin does not produce increased bacterial killing; instead, it may cause antagonism at lower concentrations.


Journal of Antimicrobial Chemotherapy | 2011

Evaluation of linezolid for the treatment of Clostridium difficile infection caused by epidemic strains using an in vitro human gut model

Simon D. Baines; Alan R. Noel; Grace S. Huscroft; Sharie L. Todhunter; Rachael O'Connor; Joanne K. Hobbs; Jane Freeman; A. M. Lovering; Mark H. Wilcox

OBJECTIVES Therapeutic options in Clostridium difficile infection (CDI) are limited. We examined linezolid activity in vitro and potential therapeutic efficacy using a gut model of CDI. METHODS MICs were determined by agar incorporation for 118 diverse C. difficile faecal isolates, including epidemic strains and strains with reduced susceptibility to metronidazole. CDI was established in two gut model experiments using C. difficile epidemic strains (ribotypes 027 and 106) and linezolid was dosed to achieve human gut concentrations. RESULTS Linezolid demonstrated good in vitro activity against 98% of the isolates. Two isolates (PCR ribotypes 023 and 067) demonstrated resistance to linezolid, although supplementary susceptibility testing of ribotype 023 isolates did not detect further resistance. In a gut model that simulates CDI, linezolid reduced the duration of cytotoxin production by C. difficile PCR ribotype 027 without influencing viable counts of vegetative forms of the organism. C. difficile PCR ribotype 106 viable counts declined at a faster rate than those of PCR ribotype 027 following dosing with linezolid, but cytotoxin titres declined at a similar rate to an untreated control. Gut flora perturbation occurring on linezolid exposure reversed after drug cessation. Recrudescence of spore germination with subsequent cytotoxin was seen with the C. difficile ribotype 106 strain. Resistance to linezolid was not detected either during linezolid instillation or post-dosing. CONCLUSIONS Linezolid may reduce toxin levels, as reported in staphylococci and streptococci. Further evaluation is warranted of the effect of linezolid on expression of C. difficile toxin, and to investigate potential recurrence of CDI following cessation of linezolid.


Antimicrobial Agents and Chemotherapy | 2011

Pharmacodynamics of Telavancin Studied in an In Vitro Pharmacokinetic Model of Infection

Alasdair P. MacGowan; Alan R. Noel; Sharon Tomaselli; Heather Elliott; Karen E. Bowker

ABSTRACT The antibacterial effects of telavancin, vancomycin, and teicoplanin against six Staphylococcus aureus strains (1 methicillin-susceptible S. aureus [MSSA] strain, 4 methicillin-resistant S. aureus [MRSA] strains, and 1 vancomycin-intermediate S. aureus [VISA] strain) and three Enterococcus sp. strains (1 Enterococcus faecalis strain, 1 Enterococcus faecium strain, and 1 vancomycin-resistant E. faecium [VREF] strain) were compared using an in vitro pharmacokinetic model of infection. Analyzing the data from all five vancomycin-susceptible S. aureus (VSSA) strains or all 4 MRSA strains showed that telavancin was superior in its antibacterial effect as measured by the area under the bacterial kill curve at 24 h (AUBKC24) and 48 h (AUBKC48) in comparison to vancomycin or teicoplanin (P < 0.05). Telavancin was also superior to vancomycin and teicoplanin in terms of its greater early killing effect (P < 0.05). Against the three Enterococcus spp. tested, telavancin was superior to vancomycin in terms of its AUBKC24, AUBKC48, and greater early bactericidal effect (P < 0.05). Dose-ranging studies were performed to provide free-drug area under the concentration-time curve over 24 h in the steady state divided by the MIC (fAUC/MIC) exposures from 0 to 1,617 (7 to 14 exposures per strain) for 5 VSSA, 4 VISA, and the 3 Enterococcus strains. The fAUC/MIC values for a 24-h bacteriostatic effect and a 1-log-unit drop in the viable count were 43.1 ± 38.4 and 50.0 ± 39.0 for VSSA, 3.2 ± 1.3 and 4.3 ± 1.3 for VISA, and 15.1 ± 8.8 and 40.1 ± 29.4 for the Enterococcus spp., respectively. The reason for the paradoxically low fAUC/MIC values for VISA strains is unknown. There was emergence of resistance to telavancin in the dose-ranging studies, as indicated by subpopulations able to grow on plates containing 2× MIC telavancin concentrations compared to the preexposure population analysis profiles. Changes in population analysis profiles were less likely with enterococci than with S. aureus, and the greatest risk of changed profiles occurred for both species at fAUC/MIC ratios of 1 to 10. Maintaining a fAUC/MIC ratio of >50 reduced the risk of subpopulations able to grow on antibiotic-containing media emerging. These data help explain the clinical effectiveness of telavancin against MRSA and indicate that telavancin may have clinically useful activity against Enterococcus spp., and perhaps also VISA, at human doses of 10 mg/kg of body weight/day. In addition, they support a clinical breakpoint of sensitive at ≤1 mg/liter for both S. aureus and Enterococcus spp.


Antimicrobial Agents and Chemotherapy | 2008

Pharmacodynamics of the Antibacterial Effect and Emergence of Resistance to Tomopenem, Formerly RO4908463/CS-023, in an In Vitro Pharmacokinetic Model of Staphylococcus aureus Infection

Alasdair P. MacGowan; Karen E. Bowker; Alan R. Noel

ABSTRACT The antibacterial effects (ABE) of tomopenem (formerly RO4908463/CS-023) against seven Staphylococcus aureus strains (methicillin-resistant S. aureus [MRSA] strain tomopenem MICs, 0.5 to 16 mg/liter; methicillin-sensitive S. aureus [MSSA] strain tomopenem MIC, 0.06 mg/liter) were studied in an in vitro pharmacokinetic model. Initially, two human doses were simulated, 750 mg every 8 hours (8hly) and 1,500 mg 8hly intravenously, using S. aureus at a standard inoculum of 106 CFU/ml. There was a rapid clearance of bacteria from the model by 12 h after drug exposure with most strains. Clearance was not related to the tomopenem MIC. The ABE of these two tomopenem dose regimens were also tested at a high inoculum, 108 CFU/ml; in all simulations, there was a >4-log drop in viable count at 24 h. Strains were not cleared from the model at 108 CFU/ml, in contrast to what was seen for the standard inoculum. When the ABE of tomopenem at 750 mg 8hly was compared to those of vancomycin, tomopenem was seen to have a superior effect, as measured by the area under the bacterial kill curve at 24 h (AUBKC24) and 48 h (P < 0.05). Dose ranging studies were performed to provide time-above-MIC (T>MIC) drug exposures of 0 to 100% (8 to 10 doses per strain) with five MRSA/MSSA strains. The T>MIC for a 24-h bacteriostatic effect was 8% ± 5% (range, 1.3% to 15.4%); the T>MIC for a 4-log drop in viable count was 32% ± 18% (range, 12.8% to 36.2%). The T>MIC for a 90% maximum response using AUBKC24 as ABE was 24.9% ± 15.7%. Inoculum had little impact on T>MIC exposures for ABE. There was emergence of resistance to tomopenem in the dose ranging studies, with increased growth of subpopulations on plates containing tomopenem at 2× and 4× the MIC compared to what was seen for preexposure population analysis at T>MICs of <20%. The pharmacodynamics of tomopenem against S. aureus is similar to those of other members of the carbapenem class, with the exception that MRSA is included. These data indicate that tomopenem will have clinically useful activity against MRSA at T>MICs achievable in humans.


Antimicrobial Agents and Chemotherapy | 2008

Pharmacodynamics of Minocycline against Staphylococcus aureus in an In Vitro Pharmacokinetic Model

Karen E. Bowker; Alan R. Noel; Alasdair P. MacGowan

ABSTRACT Free drug serum concentrations of minocycline associated with the doses given to humans (100 mg every 12 hours for 24 hours) were simulated in an in vitro hollow-fiber pharmacokinetic model. Four strains of methicillin (meticillin)-resistant Staphylococcus aureus (MRSA), United Kingdom EMRSA 15 and 16 plus a pair of blood culture isolates before and after long-term minocycline treatment, were employed. The minocycline MICs for these four strains were 0.04 mg/liter, 0.19 mg/liter, 0.06 mg/liter, and 0.75 mg/liter. The antibacterial effect (ABE) of minocycline was measured using the area under the bacterial kill curve to 24 h (AUBKC) and the log change in viable count at 24 h (d24). The ABEs of minocycline with and without the addition of rifampin (rifampicin) were compared to those of vancomycin, and dose escalation and fractionation were used to determine the dominant pharmacodynamic index and its size. Minocycline alone produced a 1.5- to 2.0-log10-unit reduction in viable count for the strains with MICs of <0.2 mg/liter, while the addition of rifampin increased the ABE for these strains (P < 0.05). Vancomycin simulations produced a reduction in viable counts of 2.8 to 4.5 log units at 24 h, which was equivalent to the minocycline-plus-rifampin combination. Free area under the concentration-time curve (AUC)/MIC was best related to AUBKC or d24 using a sigmoid maximal effect (Emax) model with r2 of 0.92 and 0.87, respectively, and the AUC/MIC ratios for no change and −1-log-unit, −2-log-unit, and −3-log-unit drop at 24 h were 33.9, 75.9, 1,350, and >2,000, respectively. Fractionation of the dose at free AUC/MICs associated with human doses showed no difference between once, twice, or three times a day dosing. In contrast, fractionation of the dose at a free AUC associated with a static effect indicated that once daily dosing was superior. These data show that minocycline is an AUC/MIC-driven agent at human exposures and that the addition of rifampin may offer benefit in terms of MRSA killing.


Antimicrobial Agents and Chemotherapy | 2005

Pharmacodynamics of Moxifloxacin against Anaerobes Studied in an In Vitro Pharmacokinetic Model

Alan R. Noel; Karen E. Bowker; Alasdair P. MacGowan

ABSTRACT The antibacterial effects of moxifloxacin against Bacteroides fragilis, Clostridium perfringens, and gram-positive anaerobic cocci (GPAC) were studied in an in vitro pharmacokinetic model. Initially, a dose-ranging study with area under the concentration-time curve (AUC)/MIC ratios of 6.7 to 890 was used to investigate the effect of anaerobic conditions on the AUC/MIC antibacterial effect (ABE) relationship with Escherichia coli. The AUC/MIC ratios for 50% and 90% effects, using a log CFU drop at 24 h as the antibacterial effect measure, were 34 and 59, respectively, aerobic and 54 and 96, respectively, anaerobic. These values are not significantly different. Dose ranging at AUC/MIC ratios of 9 to 216 against the anaerobes indicated a differing AUC/MIC ABE pattern, and the AUC/MICs for 50% and 90% effects were lower: for B. fragilis, they were 10.5 and 25.7, respectively; for C. perfringens, they were 8.6 and 16.2; and for GPAC, they were 7.3 and 17.4. The maximum-effect log drops were as follows: for B. fragilis, −3.2 ± 0.2 logs; for C. perfringens, −3.7 ± 0.1 logs; and for GPAC, −2.5 ± 0.1 logs. Although the anaerobes were not eradicated, there was no emergence of resistance. Comparison of the ABE of moxifloxacin to that of ertapenem against B. fragilis indicated that moxifloxacin was superior at 24 h and 48 h. In contrast, ertapenem was superior to moxifloxacin against GPAC at 24 h and 48 h and against C. perfringens at 48 h. Both drugs performed equivalently against C. perfringens at 24 h. Monte Carlo simulations using human serum AUC data and an AUC/MIC anaerobe target of 7.5 suggests a >90% target achievement at MICs of <2 mg/liter. This divides the B. fragilis wild-type MIC distribution. The pharmacodynamic properties of moxifloxacin against anaerobes are different than those against aerobic species. The clinical implications of these differences need further exploration.


Antimicrobial Agents and Chemotherapy | 2003

Activity of AZD2563, a Novel Oxazolidinone, against Staphylococcus aureus Strains with Reduced Susceptibility to Vancomycin or Linezolid

Robin Howe; Mandy Wootton; Alan R. Noel; Karen E. Bowker; Timothy R. Walsh; Alasdair P. MacGowan

ABSTRACT The susceptibilities of clinical vancomycin-intermediate Staphylococcus aureus (VISA), heterogenous VISA, and laboratory-generated linezolid-resistant S. aureus strains to the new oxazolidinone AZD2563 were assessed by agar dilution MIC determination. All clinical strains were susceptible to linezolid, and the linezolid MICs for them were equal to or twofold higher than those of AZD2563. Cross-resistance with linezolid was seen in laboratory-generated mutants, and for these strains the MIC of AZD2563 was twofold higher than that of linezolid.


Journal of Antimicrobial Chemotherapy | 2014

Colistin susceptibility testing: time for a review

Mahableshwar Albur; Alan R. Noel; Karen E. Bowker; Alasdair P. MacGowan

Sir, Colistin has re-emerged as an important antimicrobial in recent times owing to limited therapeutic options against carbapenemresistant Gram-negative bacteria. Current guidelines (BSAC, CLSI and EUCAST) recommend routine colistin susceptibility testing by estimation of MIC because the disc diffusion test does not reliably detect low-level resistance. – 5 Broth microdilution (BMD) is widely used as a method of MIC estimation in Europe and the USA. Colistin exhibits a varying degree of adherence to organic and inorganic materials due to its polycationic nature, resulting in loss during experimental conditions. Also, polysorbate 80 (P-80), a surfactant widely used as a dispersing agent in BMD panels, may influence the free drug concentration of colistin and hence MIC results. We evaluated the impact of the use of different BMD panels and the presence of P-80 on colistin MIC estimation. A total of 146 clinical isolates collected from a variety of sources and stored at 2708C were evaluated in this study. The isolates included 56 Pseudomonas aeruginosa, 29 Acinetobacter spp. and 61 Enterobacteriaceae. The MIC testing was carried out on two different types of polystyrene microtitre trays (MTTs), namely non-coated V-bottom MTTs (NMTTs; costar 3896; Corning, NY, USA) and tissue-culture-coated round-bottom MTTs (TCMTTs; costar 3799; Corning). The MICs of colistin for the isolates were determined using the CLSI broth dilution method using colistin sulphate. MIC determination was carried out by using an initial bacterial inoculum of 5×10 cfu/mL in Mueller–Hinton broth with or without P-80 (final P-80 concentration of 0.002%) on both types of MTT. The experiments were done in triplicate, and quality control was assured by concurrent testing of P. aeruginosa ATCC 27853 as a control, with all results within the range published by the CLSI. MICs for the isolates in both types of MTT with or without P-80 are shown in Table 1. The NMTT MICs (mean 0.54+0.58) were significantly lower than the TCMTT MICs (mean 2.84+1.93) (P,0.0001; 95% CI –2.5 to –2.1). The tissue coating on MTTs, achieved by means of excess negative electric charge, resulted in an overall 5.3-fold increase in MIC value, probably due to decreased free colistin concentration within the microwells. The differences in MIC results were seen among all types/groups of isolates (3.2, 5.5 and 9.4, respectively, for P. aeruginosa, Enterobacteriaceae and Acinetobacter spp.). The addition of P-80 to NMTTs significantly decreased the colistin MIC (mean 0.09+0.09) by 6-fold (P,0.0001; 95% CI 0.4 –0.5). Although there was a relatively smaller decrease (1.24-fold) in the mean MIC determined using TCMTTs with added P-80 (mean 2.3+1.5), this was also statistically significant (P,0.001; 95% CI 20.31 to 20.75). Comparing the MICs determined using NMTTs and


Journal of Antimicrobial Chemotherapy | 2009

Comparative antibacterial effects of daptomycin, vancomycin and teicoplanin studied in an in vitro pharmacokinetic model of infection

Karen E. Bowker; Alan R. Noel; Alasdair P. MacGowan

OBJECTIVES To compare the antibacterial effects (ABEs) of the free (f) drugs daptomycin, vancomycin and teicoplanin against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA), using high and low inocula in a pharmacokinetic in vitro model. To determine the daptomycin fAUC/MIC ratio for a static effect and 3 log reduction in viable count and relate this target to the clinical breakpoint. METHODS Five clinical MRSA isolates held at Southmead Hospital were used (SMH 15841, SMH 40289, SMH 40275, SMH 33922 and SMH 33024) together with a VRSA isolate (SMH 19898); inocula of 10(6) and 10(8) cfu/mL were used. Daptomycin (6 mg/kg once daily), vancomycin (1 g twice daily) and teicoplanin (400 mg once daily) regimens were simulated. ABEs were measured using the 24 h area-under-the-bacterial kill curve (AUBKC) and log change in viable count at 24 h (Delta24). For daptomycin, dose escalation was used to determine the relationship between ABE and AUC/MIC. RESULTS Daptomycin was bactericidal against the MRSA strains. Daptomycin and vancomycin were active against the VRSA strain; teicoplanin had a static effect. The higher inoculum reduced the ABEs. Analysis of variance (ANOVA) indicated that daptomycin had a superior ABE to teicoplanin and vancomycin. Daptomycin fAUC/MIC was related to AUBKC and Delta24; the fAUC/MIC ratios for a static effect and 1 log and 3 log drop were 37.2 +/- 16.5, 40.6 +/- 17.8 and 49.8 +/- 19.2, respectively. CONCLUSIONS These data define the fAUC/MIC sizes for daptomycin for bacteriostatic and bactericidal ABEs and indicate that a 6 mg/kg dose of daptomycin is superior to vancomycin and teicoplanin against MRSA and VRSA strains.

Collaboration


Dive into the Alan R. Noel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge