Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Rembach is active.

Publication


Featured researches published by Alan Rembach.


Journal of Biological Chemistry | 2006

Induction of the Unfolded Protein Response in Familial Amyotrophic Lateral Sclerosis and Association of Protein-disulfide Isomerase with Superoxide Dismutase 1

Julie D. Atkin; Manal A. Farg; Bradley J. Turner; Doris Tomas; Judith A. Lysaght; Janelle Nunan; Alan Rembach; Phillip Nagley; Philip M. Beart; Surindar S. Cheema; Malcolm K. Horne

Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study.


Journal of Alzheimer's Disease | 2010

PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses.

Noel G. Faux; Craig Ritchie; Adam P. Gunn; Alan Rembach; Andrew Tsatsanis; Justin Bedo; John Harrison; Lars Lannfelt; Kaj Blennow; Henrik Zetterberg; Martin Ingelsson; Colin L. Masters; Rudolph E. Tanzi; Jeffrey L. Cummings; Caroline M. Herd; Ashley I. Bush

PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimers disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta42, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis. Ranking the responses to treatment after 12 weeks with placebo, PBT2 50 mg, and PBT2 250 mg revealed that the proportions of patients showing improvement on NTB Composite or Executive Factor z-scores were significantly greater in the PBT2 250 mg group than in the placebo group. Receiver-operator characteristic analyses revealed that the probability of an improver at any level coming from the PBT2 250 mg group was significantly greater, compared to placebo, for Composite z-scores (Area Under the Curve [AUC] =0.76, p=0.0007), Executive Factor z-scores (AUC =0.93, p=1.3 x 10(-9)), and near-significant for the ADAS-cog (AUC =0.72, p=0.056). There were no correlations between changes in CSF amyloid-beta or tau species and cognitive changes. These findings further encourage larger-scale testing of PBT2 for AD.


The Journal of Neuroscience | 2005

Impaired Extracellular Secretion of Mutant Superoxide Dismutase 1 Associates with Neurotoxicity in Familial Amyotrophic Lateral Sclerosis

Bradley J. Turner; Julie D. Atkin; Manal A. Farg; Da Wei Zang; Alan Rembach; Elizabeth C. Lopes; Justin D. Patch; Andrew F. Hill; Surindar S. Cheema

Mutations in the intracellular metalloenzyme superoxide dismutase 1 (SOD1) are linked to neurotoxicity in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism. Golgi fragmentation and endoplasmic reticulum stress are early hallmarks of spinal motor neuron pathology in transgenic mice overexpressing mutant SOD1, suggesting that dysfunction of the neuronal secretory pathway may contribute to ALS pathogenesis. We therefore proposed that mutant SOD1 directly engages and modulates the secretory pathway based on recent evidence of SOD1 secretion in diverse human cell lines. Here, we demonstrate that a fraction of active endogenous SOD1 is secreted by NSC-34 motor neuron-like cells via a brefeldin-A (BFA)-sensitive pathway. Expression of enhanced green fluorescent protein-tagged mutant human SOD1 (hSOD1-EGFP) in NSC-34 cells induced frequent cytoplasmic inclusions and protein insolubility that correlated with toxicity. In contrast, transfection of non-neuronal COS-7 cells resulted in mutant hSOD1-EGFP cytoplasmic inclusions, oligomerization, and fragmentation without detectable toxicity. Importantly, impaired secretion of hSOD1-EGFP was common to all 10 SOD1 mutants tested relative to wild-type protein in NSC-34 cells. Treatment with BFA inhibited hSOD1-EGFP secretion with pronounced BFA-induced toxicity in mutant cells. Extracellular targeting of mutant hSOD1-EGFP via SOD3 signal peptide fusion attenuated cytoplasmic inclusion formation and toxicity. The effect of elevated extracellular SOD1 was then evaluated in a transgenic rat model of ALS. Chronic intraspinal infusion of exogenous wild-type hSOD1 significantly delayed disease progression and endpoint in transgenic SOD1G93A rats. Collectively, these results suggest novel extracellular roles for SOD1 in ALS and support a causal relationship between mutant SOD1 secretion and intraneuronal toxicity.


Journal of Alzheimer's Disease | 2010

Plasma Amyloid-β as a Biomarker in Alzheimer's Disease: The AIBL Study of Aging

James Lui; Simon M. Laws; Qiao-Xin Li; Victor L. Villemagne; David Ames; Belinda M. Brown; Ashley I. Bush; Karl De Ruyck; Jasmin Dromey; K. Ellis; Noel G. Faux; Jonathan K. Foster; Chris Fowler; Veer Gupta; Peter J. Hudson; Katrina M. Laughton; Colin L. Masters; Kelly K. Pertile; Alan Rembach; Mira Rimajova; Mark Rodrigues; Christopher C. Rowe; Rebecca L. Rumble; Cassandra Szoeke; Kevin Taddei; Tania Taddei; Brett Trounson; Vanessa Ward; Ralph N. Martins

Amyloid-beta (Abeta) plays a central role in the pathogenesis of Alzheimers disease (AD) and has been postulated as a potential biomarker for AD. However, there is a lack of consensus as to its suitability as an AD biomarker. The objective of this study was to determine the significance of plasma Abeta as an AD biomarker and its relationship with Abeta load and to determine the effect of different assay methods on the interpretation of Abeta levels. Plasma Abeta1-40, Abeta1-42, and N-terminal cleaved fragments were measured using both a commercial multiplex assay and a well-documented ELISA in 1032 individuals drawn from the well-characterized Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Further, Abeta levels were compared to Abeta load derived from positron-emission tomography (PET) with the Pittsburgh compound B (PiB). Lower Abeta1-42 and Abeta1-42/1-40 ratio were observed in patients with AD and inversely correlated with PiB-PET derived Abeta load. However, assay methodology significantly impacted the interpretation of data. The cross-sectional analysis of plasma Abeta isoforms suggests that they may not be sufficient per se to diagnose AD. The value of their measurement in prognosis and monitoring of AD interventions needs further study, in addition to future longitudinal comparisons together with other predictors, which will determine whether plasma Abeta has diagnostic value in a panel of biomarkers.


Journal of Biological Chemistry | 2011

Copper Promotes the Trafficking of the Amyloid Precursor Protein

Karla M. Acevedo; Ya Hui Hung; Andrew H. Dalziel; Qiao-Xin Li; Katrina M. Laughton; Krutika Wikhe; Alan Rembach; Blaine R. Roberts; Colin L. Masters; Ashley I. Bush; James Camakaris

Accumulation of the amyloid β peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid β peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells and primary cortical neurons, copper promoted a redistribution of APP from a perinuclear localization to a wider distribution, including neurites. Importantly, a change in APP localization was not attributed to an up-regulation of APP protein synthesis. Using live cell imaging and endocytosis assays, we found that copper promotes an increase in cell surface APP by increasing its exocytosis and reducing its endocytosis, respectively. This study identifies a novel mechanism by which copper regulates the localization and presumably the function of APP, which is of major significance for understanding the role of APP in copper homeostasis and the role of copper in Alzheimer disease.


Alzheimers & Dementia | 2014

Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer's disease

Alan Rembach; Noel G. Faux; Andrew D. Watt; Kelly K. Pertile; Rebecca L. Rumble; Brett Trounson; Christopher Fowler; Blaine R. Roberts; Keyla Perez; Qiao-Xin Li; Simon M. Laws; Kevin Taddei; Stephanie R. Rainey-Smith; Joanne S. Robertson; Manu Vandijck; Hugo Vanderstichele; Kevin J. Barnham; K. Ellis; Cassandra Szoeke; S. Lance Macaulay; Christopher C. Rowe; Victor L. Villemagne; David Ames; Ralph N. Martins; Ashley I. Bush; Colin L. Masters

A practical biomarker is required to facilitate the preclinical diagnosis of Alzheimers disease (AD).


Molecular Psychiatry | 2015

APOE and BDNF polymorphisms moderate amyloid β-related cognitive decline in preclinical Alzheimer's disease.

Yen Ying Lim; Victor L. Villemagne; Simon M. Laws; Robb Pietrzak; Peter J. Snyder; David Ames; K. Ellis; Karra Harrington; Alan Rembach; Ralph N. Martins; Christopher C. Rowe; Colin L. Masters; Paul Maruff

Accumulation of β-amyloid (Aβ) in the brain is associated with memory decline in healthy individuals as a prelude to Alzheimer’s disease (AD). Genetic factors may moderate this decline. We examined the role of apolipoprotein E (ɛ4 carrier[ɛ4+], ɛ4 non-carrier[ɛ4−]) and brain-derived neurotrophic factor (BDNFVal/Val, BDNFMet) in the extent to which they moderate Aβ-related memory decline. Healthy adults (n=333, Mage=70 years) enrolled in the Australian Imaging, Biomarkers and Lifestyle study underwent Aβ neuroimaging. Neuropsychological assessments were conducted at baseline, 18-, 36- and 54-month follow-ups. Aβ positron emission tomography neuroimaging was used to classify participants as Aβ− or Aβ+. Relative to Aβ−ɛ4−, Aβ+ɛ4+ individuals showed significantly faster rates of cognitive decline over 54 months across all domains (d=0.40–1.22), while Aβ+ɛ4− individuals showed significantly faster decline only on verbal episodic memory (EM). There were no differences in rates of cognitive change between Aβ−ɛ4− and Aβ−ɛ4+ groups. Among Aβ+ individuals, ɛ4+/BDNFMet participants showed a significantly faster rate of decline on verbal and visual EM, and language over 54 months compared with ɛ4−/BDNFVal/Val participants (d=0.90–1.02). At least two genetic loci affect the rate of Aβ-related cognitive decline. Aβ+ɛ4+/BDNFMet individuals can expect to show clinically significant memory impairment after 3 years, whereas Aβ+ɛ4+/BDNFVal/Val individuals can expect a similar degree of impairment after 10 years. Little decline over 54 months was observed in the Aβ− and Aβ+ ɛ4− groups, irrespective of BDNF status. These data raise important prognostic issues in managing preclinical AD, and should be considered in designing secondary preventative clinical trials.


Journal of Alzheimer's Disease | 2011

Homocysteine, Vitamin B12, and Folic Acid Levels in Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Elderly: Baseline Characteristics in Subjects of the Australian Imaging Biomarker Lifestyle Study.

Noel G. Faux; K. Ellis; Lorine Porter; Christopher Fowler; Simon M. Laws; Ralph N. Martins; Kelly K. Pertile; Alan Rembach; Christopher C. Rowe; Rebecca L. Rumble; Cassandra Szoeke; Kevin Taddei; Tania Taddei; Brett Trounson; Victor L. Villemagne; Vanessa Ward; David Ames; Colin L. Masters; Ashley I. Bush

There is some debate regarding the differing levels of plasma homocysteine, vitamin B12 and serum folate between healthy controls (HC), mild cognitive impairment (MCI), and Alzheimers disease (AD). As part of the Australian Imaging Biomarker Lifestyle (AIBL) study of aging cohort, consisting of 1,112 participants (768 HC, 133 MCI patients, and 211 AD patients), plasma homocysteine, vitamin B12, and serum and red cell folate were measured at baseline to investigate their levels, their inter-associations, and their relationships with cognition. The results of this cross-sectional study showed that homocysteine levels were increased in female AD patients compared to female HC subjects (+16%, p-value < 0.001), but not in males. Red cell folate, but not serum folate, was decreased in AD patients compared to HC (-10%, p-value = 0.004). Composite z-scores of short- and long-term episodic memory, total episodic memory, and global cognition all showed significant negative correlations with homocysteine, in all clinical categories. Increasing red cell folate had a U-shaped association with homocysteine, so that high red cell folate levels were associated with worse long-term episodic memory, total episodic memory, and global cognition. These findings underscore the association of plasma homocysteine with cognitive deterioration, although not unique to AD, and identified an unexpected abnormality of red cell folate.


Neurobiology of Aging | 2015

Trajectories of memory decline in preclinical Alzheimer's disease: results from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing

Robert H. Pietrzak; Yen Ying Lim; David Ames; Karra Harrington; Carolina Restrepo; Ralph N. Martins; Alan Rembach; Simon M. Laws; Colin L. Masters; Victor L. Villemagne; Christopher C. Rowe; Paul Maruff

Memory changes in preclinical Alzheimers disease (AD) are often characterized by heterogenous trajectories. However, data regarding the nature and determinants of predominant trajectories of memory changes in preclinical AD are lacking. We analyzed data from 333 cognitively healthy older adults who participated in a multicenter prospective cohort study with baseline and 18-, 36-, and 54-month follow-up assessments. Latent growth mixture modeling revealed 3 predominant trajectories of memory change: a below average, subtly declining memory trajectory (30.9%); a below average, rapidly declining memory trajectory (3.6%); and an above average, stable memory trajectory (65.5%). Compared with the stable memory trajectory, high Αβ (relative risk ratio [RRR] = 2.1), and lower Mini-Mental State Examination (RRR = 0.6) and full-scale IQ (RRR = 0.9) scores were independently associated with the subtly declining memory trajectory; and high Αβ (RRR = 8.3), APOE ε4 carriage (RRR = 6.1), and greater subjective memory impairment (RRR = 1.2) were independently associated with the rapidly declining memory trajectory. Compared with the subtly declining memory trajectory group, APOE ε4 carriage (RRR = 8.4), and subjective memory complaints (RRR = 1.2) were associated with a rapidly declining memory trajectory. These results suggest that the preclinical phase of AD may be characterized by 2 predominant trajectories of memory decline that have common (e.g., high Αβ) and unique (e.g., APOE ε4 genotype) determinants.


Molecular Psychiatry | 2014

An anemia of Alzheimer's disease

Noel G. Faux; Alan Rembach; James S. Wiley; K. Ellis; David Ames; Christopher Fowler; Ralph N. Martins; Kelly K. Pertile; Rebecca L. Rumble; Brett Trounson; Colin L. Masters; Ashley I. Bush

Lower hemoglobin is associated with cognitive impairment and Alzheimers disease (AD). Since brain iron homeostasis is perturbed in AD, we investigated whether this is peripherally reflected in the hematological and related blood chemistry values from the Australian Imaging Biomarker and Lifestyle (AIBL) study (a community-based, cross-sectional cohort comprising 768 healthy controls (HC), 133 participants with mild cognitive impairment (MCI) and 211 participants with AD). We found that individuals with AD had significantly lower hemoglobin, mean cell hemoglobin concentrations, packed cell volume and higher erythrocyte sedimentation rates (adjusted for age, gender, APOE-ɛ4 and site). In AD, plasma iron, transferrin, transferrin saturation and red cell folate levels exhibited a significant distortion of their customary relationship to hemoglobin levels. There was a strong association between anemia and AD (adjusted odds ratio (OR)=2.43, confidence interval (CI) (1.31, 4.54)). Moreover, AD emerged as a strong risk factor for anemia on step-down regression, even when controlling for all other available explanations for anemia (adjusted OR=3.41, 95% CI (1.68, 6.92)). These data indicated that AD is complicated by anemia, which may itself contribute to cognitive decline.

Collaboration


Dive into the Alan Rembach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Ames

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Ellis

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Ashley I. Bush

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Doecke

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Christopher Fowler

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge