Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Wolfman is active.

Publication


Featured researches published by Alan Wolfman.


Science | 2009

Function of Mitochondrial Stat3 in Cellular Respiration

Joanna Wegrzyn; Ramesh Potla; Yong Joon Chwae; Naresh Babu V. Sepuri; Qifang Zhang; Thomas Koeck; Marta Derecka; Karol Szczepanek; Magdalena Szelag; Agnieszka Olga Gornicka; Akira Moh; Shadi Moghaddas; Qun Chen; Santha Bobbili; Joanna Cichy; Jozef Dulak; Darren P. Baker; Alan Wolfman; Dennis J. Stuehr; Medhat O. Hassan; Xin-Yuan Fu; Narayan G. Avadhani; Jennifer I. Drake; Paul Fawcett; Edward J. Lesnefsky; Andrew C. Larner

Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3–/– cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the proteins function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.


Molecular and Cellular Biology | 1994

MECHANISM OF INHIBITION OF RAF-1 BY PROTEIN KINASE A

S Häfner; H S Adler; Harald Mischak; Petra Janosch; Gisela Heidecker; Alan Wolfman; S Pippig; M Lohse; Marius Ueffing; Walter Kolch

The cytoplasmic Raf-1 kinase is essential for mitogenic signalling by growth factors, which couple to tyrosine kinases, and by tumor-promoting phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate, which activate protein kinase C (PKC). Signalling by the Raf-1 kinase can be blocked by activation of the cyclic AMP (cAMP)-dependent protein kinase A (PKA). The molecular mechanism of this inhibition is not precisely known but has been suggested to involve attenuation of Raf-1 binding to Ras. Using purified proteins, we show that in addition to weakening the interaction of Raf-1 with Ras, PKA can inhibit Raf-1 function directly via phosphorylation of the Raf-1 kinase domain. Phosphorylation by PKA interferes with the activation of Raf-1 by either PKC alpha or the tyrosine kinase Lck and even can downregulate the kinase activity of Raf-1 previously activated by PKC alpha or amino-terminal truncation. This type of inhibition can be dissociated from the ability of Raf-1 to associate with Ras, since (i) the isolated Raf-1 kinase domain, which lacks the Ras binding domain, is still susceptible to inhibition by PKA, (ii) phosphorylation of Raf-1 by PKC alpha alleviates the PKA-induced reduction of Ras binding but does not prevent the downregulation of Raf-1 kinase activity by PKA and (iii) cAMP agonists antagonize transformation by v-Raf, which is Ras independent.


Trends in Genetics | 1994

The 3Rs of life: Ras, Raf and growth regulation

Shonna A. Moodie; Alan Wolfman

Cellular Ras proteins are essential elements in normal signal transduction pathways while activated Ras proteins are prevalent in many different forms of human cancers. Here, we discuss the mechanism through which Ras proteins, either cellular or activated, transmit a proliferative signal by activating cytoplasmic serine/threonine kinases.


Oncogene | 1999

Cloning of TACC1 , an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon

Ivan H. Still; Mark Hamilton; Pauline Vince; Alan Wolfman; John K. Cowell

Amplification of several chromosomal regions have been observed in human breast carcinomas. One such region, 8p11, is amplified in 10 – 15% of tumor samples. Although the FGFR1 gene is located close to this region, and is often included within the amplicon, the observation that tumors exhibiting 8p11 amplification do not always overexpress FGFR1 suggests that another gene located close to FGFR1 is involved in the tumorigenic process. We now report the precise location of four expressed sequence tags (ESTs) within this region and the cloning of a novel gene, designated TACC1 (transforming acidic coiled coil gene 1), which encodes an 8 kb transcript and which is expressed at high levels during early embryogenesis. Constitutive expression of this gene under the control of the cytomegalovirus (CMV) promoter in mouse fibroblasts, results in cellular transformation and anchorage independent growth, suggesting that inappropriate expression can impart a proliferative advantage. This observation raises the possibility that amplification of TACC1 could promote malignant growth, thereby making TACC1 an attractive candidate for the gene promoting tumorigenicity as a result of the 8p11 amplification in human breast cancers.


Oncogene | 1998

Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo.

Mark Hamilton; Alan Wolfman

The Ras GTPases function as molecular switches, regulating a multiplicity of biological events. However the contribution, if any, of a specific c-Ras isoform (Ha-, N-, or Ki-ras A or B) in the regulation of a given biological or biochemical process, is unknown. Murine C3H10T1/2 fibroblasts transformed with activated (G12V)Ha-ras or (Q61K)N-ras proliferate in serum-free media and have constitutive MAPK activity. The growth factor antagonist, suramin, inhibited the serum-independent proliferation of Ha-ras transformed fibroblasts, but not the serum-independent proliferation of N-ras transformed cells. The inhibition of cell proliferation was concomitant with the abrogation of the constitutive MAPK activity in the Ha-ras transformed fibroblasts. Analysis of the Ras-signalling complexes in immunoprecipitates from Ha-ras transformed cells revealed that Raf-1 co-immunoprecipitated with endogenous c-N-ras but not (G12V)Ha-ras. Pretreatment with suramin resulted in the loss of Raf-1 from c-N-ras immunoprecipitates. A c-N-ras antisense oligonucleotide, which down-regulated c-N-ras protein levels, abrogated the constitutive MAPK activity and serum-independent proliferation of (G12V)Ha-ras transformed cells. The data suggest that Raf-1 has a higher affinity for N-ras then Ha-ras in vivo, and c-N-ras function is required for the serum-independent proliferation of Ha-ras transformed cells.


Molecular and Cellular Biology | 1994

ASSOCIATION OF MEK1 WITH P21RAS.GMPPNP IS DEPENDENT ON B-RAF

S A Moodie; M J Paris; Walter Kolch; Alan Wolfman

We have previously reported that immobilized p21ras forms a GMPPNP-dependent complex with a MEK activity. Furthermore, the association of the MEK activity was found to be independent of the presence of Raf-1. We have extended those observations to show that MEK1 is the MEK activity previously described to associate with immobilized p21ras.GMPPNP. The association between MEK1 and immobilized p21ras.GMPPNP increased its specific activity towards p42MAPK. We detected the specific association of B-Raf with immobilized p21ras.GMPPNP. In contrast to Raf-1-immunodepleted lysates, preclearance of the cytosolic B-Raf significantly reduced, by 96%, the amount of MEK1 activity associated with immobilized p21ras.GMPPNP. The decrease in MEK1 activity correlated with complete loss in the binding of both B-Raf and MEK1 proteins with immobilized p21ras.GMPPNP. These data suggest that the p21ras.GMPPNP-dependent activation of MEK1 in brain extracts is dependent on the presence of the B-Raf protein kinase.


Molecular and Cellular Biology | 2002

Cellular N-Ras Promotes Cell Survival by Downregulation of Jun N-Terminal Protein Kinase and p38

Janice C. Wolfman; Todd Palmby; Channing J. Der; Alan Wolfman

ABSTRACT Cellular N-Ras provides a steady-state antiapoptotic signal, at least partially through the regulation of phosphorylated Akt and Bad levels. Fibroblasts lacking c-N-Ras expression are highly sensitive to the induction of apoptosis by a variety of agents. Reduction of pBad and pAkt levels using a phosphatidylinositol 3-kinase inhibitor was not sufficient to sensitize the control cell population to the high level of apoptosis observed in the N-Ras knockout cell lines, suggesting that c-N-Ras provides at least one other antiapoptotic signal. Stimulation of the control cells with apoptotic agents results in a transient increase in Jun N-terminal protein kinase (JNK)/p38 activity that decreased to baseline levels during the time course of the experiments. In all cases, however, sustained JNK/p38 activity was observed in cells lacking c-N-Ras expression. This correlated with sustained levels of phosphorylated MKK4 and MKK3/6, upstream activators of JNK and p38, respectively. Mimicking the sustained activation of JNK in the control cells did result in increasing their sensitivity to apoptotic agents, suggesting that prolonged JNK activity is a proapoptotic event. We also examined the potential downstream c-N-Ras targets that might be involved in regulating the duration of the JNK/p38 signal. Only the RalGDS 37G-N-Ras protein protected the N-Ras knockout cells from apoptosis and restored transient rather than sustained JNK activation. These data suggest that cellular N-Ras provides an antiapoptotic signal through at least two distinct mechanisms, one which regulates steady-state pBad and pAkt levels and one which regulates the duration of JNK/p38 activity following an apoptotic challenge.


Journal of Biological Chemistry | 1999

Catalytically Active TYK2 Is Essential for Interferon-β-mediated Phosphorylation of STAT3 and Interferon-α Receptor-1 (IFNAR-1) but Not for Activation of Phosphoinositol 3-Kinase

M.R. Sandhya Rani; Douglas W. Leaman; Yulong Han; Stewart Leung; Ed Croze; Eleanor N. Fish; Alan Wolfman; Richard M. Ransohoff

TYK2, a Janus kinase, plays both structural and catalytic roles in type I interferon (IFN) signaling. We recently reported (Rani, M. R. S., Gauzzi, C., Pellegrini, S., Fish, E., Wei, T., and Ransohoff, R. M. (1999) J. Biol. Chem. 274, 1891–1897) that catalytically active TYK2 was necessary for IFN-β to induce the β-R1 gene. We now report IFN-β-mediated activation of STATs and other components in U1 (TYK2-null) cell lines that were complemented with kinase-negative (U1.KR930) or wild-type TYK2 (U1.wt). We found that IFN-β induced phosphorylation on tyrosine of STAT3 in U1.wt cells but not in U1.KR930 cells, whereas STAT1 and STAT2 were activated in both cell lines. Additionally, IFN-β-mediated phosphorylation of interferon-α receptor-1 (IFNAR-1) was defective in IFN-β treated U1.KR930 cells, but evident in U1.wt cells. In U1A-derived cells, the p85/p110 phosphoinositol 3-kinase isoform was associated with IFNAR-1 but not STAT3, and the association was ligand-independent. Further, IFN-β treatment stimulated IFNAR-1-associated phosphoinositol kinase activity equally in either U1.wt or U1.KR930 cells. Our results indicate that catalytically active TYK2 is required for IFN-β-mediated tyrosine phosphorylation of STAT3 and IFNAR-1 in intact cells.


Journal of Biological Chemistry | 1998

Oncogenic Ha-Ras-dependent Mitogen-activated Protein Kinase Activity Requires Signaling Through the Epidermal Growth Factor Receptor

Mark Hamilton; Alan Wolfman

C3H10T1/2 fibroblasts transformed by the minimal expression of oncogenic Ha-Ras (V12H10 cells) or N-Ras (K61N10 cells) have constitutive mitogen-activated protein kinase (MAPK) activity and proliferate in serum-free medium. The constitutive MAPK activity and serum-independent proliferation of V12H10 cells are sensitive to the growth factor antagonist, suramin (Hamilton, M., and Wolfman, A. (1998)Oncogene 16, 1417–1428), suggesting that Ha-Ras-mediated regulation of the MAPK cascade is dependent upon the action of an autocrine factor. Serum-free medium conditioned by V12H10 cells contains an activity that stimulates MAPK activity in quiescent fibroblasts. This MAPK stimulatory activity could be specifically blocked by the epidermal growth factor receptor (EGFR) inhibitors, PD153035 and PD158780. These inhibitors also blocked the serum-independent proliferation of V12H10 cells. Immunodepletion of conditioned medium with antibodies to transforming growth factor α and EGF significantly inhibited its ability to stimulate MAPK activity. Stable transfection of EGFR-negative NR6 and EGFR-positive Swiss3T3 cells with oncogenic (G12V)Ha-Ras demonstrated that only the Ha-Ras-transfected Swiss 3T3 cells possessed constitutive MAPK activity, and this activity was sensitive to PD153035. These data suggest that autocrine activation of the EGFR is required for the regulation of the MAPK cascade in cells minimally expressing oncogenic Ha-Ras.


Oncogene | 2001

Regulation of p53 expression by the RAS-MAP kinase pathway

Munna L. Agarwal; Chilakamarti V. Ramana; Mark Hamilton; William R. Taylor; Samuel E. DePrimo; Lora J. H. Bean; Archana Agarwal; Mukesh K. Agarwal; Alan Wolfman; George R. Stark

Activation of MAP kinase leads to the activation of p53-dependent pathways, and vice-versa. Although the amount of p53 protein increases in response to MAP kinase-dependent signaling, the basis of this increase is not yet fully understood. We have isolated the mutant cell line AP14, defective in p53 expression, from human HT1080 fibrosarcoma cells, which have an activated ras allele. The expression of p53 mRNA and protein is ∼10-fold lower in AP14 cells than in the parental cells. The high constitutive phosphorylation and activities of the MAP kinases ERK1 and ERK2 in HT1080 cells are greatly reduced in AP14 cells, although the levels of these proteins are unchanged, suggesting that the defect in the mutant cells affects the steady-state phosphorylation of ERK1 and ERK2. Overexpression of ERK2 in AP14 cells restored both MAP kinase activity and p53 expression, and incubation of the mutant cells with the phosphatase inhibitor orthovanadate resulted in strong coordinate elevation of MAP kinase activity and p53 expression. The levels of expression of the p53-regulated gene p21 parallel those of p53 throughout, showing that basal p21 expression depends on p53. The levels of p53 mRNA increased by 5–8-fold when activated ras was introduced into wild-type cells, and the levels of the p53 and p21 proteins decreased substantially in wild-type cells treated with the MEK inhibitor U0216. We conclude that MAP kinase-dependent pathways help to regulate p53 levels by regulating the expression of p53 mRNA.

Collaboration


Dive into the Alan Wolfman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Grabiner

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. Larner

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge