Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alar Teemusk is active.

Publication


Featured researches published by Alar Teemusk.


Gcb Bioenergy | 2016

Full carbon and greenhouse gas balances of fertilized and nonfertilized reed canary grass cultivations on an abandoned peat extraction area in a dry year

Järvi Järveoja; Matthias Peichl; Martin Maddison; Alar Teemusk; Ülo Mander

Bioenergy crop cultivation on former peat extraction areas is a potential after‐use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG‐F) and nonfertilized (RCG‐C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above‐ and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation‐free trenched plots. Fertilization increased the above‐ to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m−2 yr−1 in RCG‐F, RCG‐C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha−1 yr−1 in RCG‐F, RCG‐C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.


Archive | 2015

Global Boundary Lines of N2O and CH4 Emission in Peatlands

Jaan Pärn; Anto Aasa; Sergey Egorov; Ilya Filippov; Geofrey Gabiri; Iuliana Gheorghe; Järvi Järveoja; Kuno Kasak; Fatima Laggoun-Défarge; Charles Kizza Luswata; Martin Maddison; William J. Mitsch; Hlynur Óskarsson; Stéphanie Pellerin; Jüri-Ott Salm; Kristina Sohar; Kaido Soosaar; Alar Teemusk; Moses M. Tenywa; Jorge A. Villa; Christina Vohla; Ülo Mander

Predicting N2O (nitrous oxide) and CH4 (methane) emissions from peatlands is challenging because of the complex coaction of biogeochemical factors. This study uses data from a global soil and gas sampling campaign. The objective is to analyse N2O and CH4 emissions in terms of peat physical and chemical conditions. Our study areas were evenly distributed across the A, C and D climates of the Koppen classification. Gas measurements using static chambers, groundwater analysis and gas and peat sampling for further laboratory analysis have been conducted in 13 regions evenly distributed across the globe. In each study area at least two study sites were established. Each site featured at least three sampling plots, three replicate chambers and corresponding soil pits and one observation well per plot. Gas emissions were measured during 2–3 days in at least three sessions. A log-log linear function limits N2O emissions in relation to soil TIN (total inorganic nitrogen). The boundary line of N2O in terms of soil temperature is semilog linear. The closest representation of the relationship between N2O and soil moisture is a local regression curve with its optimum at 60–70 %. Semilog linear upper boundaries describe the effects of soil moisture and soil temperature to CH4 best.


Nature Communications | 2018

Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots

Jaan Pärn; Jos T. A. Verhoeven; Klaus Butterbach-Bahl; Nancy B. Dise; Sami Ullah; Anto Aasa; Sergey Egorov; Mikk Espenberg; Järvi Järveoja; Jyrki Jauhiainen; Kuno Kasak; Leif Klemedtsson; Ain Kull; Fatima Laggoun-Défarge; Elena D. Lapshina; Annalea Lohila; Krista Lõhmus; Martin Maddison; William J. Mitsch; Christoph Müller; Ülo Niinemets; Bruce Osborne; Taavi Pae; Jüri-Ott Salm; Fotis Sgouridis; Kristina Sohar; Kaido Soosaar; Kathryn Storey; Alar Teemusk; Moses M. Tenywa

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3−), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3− and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3−-N kg−1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3− explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.In a global field survey across a wide range of organic soils, the authors find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3–), water content and temperature. N2O emission increases with NO3– and temperature and follows a bell-shaped distribution with water content.


Ecological Engineering | 2007

Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events

Alar Teemusk; Ülo Mander


Building and Environment | 2009

Greenroof potential to reduce temperature fluctuations of a roof membrane : A case study from Estonia

Alar Teemusk; Ülo Mander


Ecological Engineering | 2010

Temperature regime of planted roofs compared with conventional roofing systems.

Alar Teemusk; Ülo Mander


Water Resources Management | 2011

The Influence of Green Roofs on Runoff Water Quality: A Case Study from Estonia

Alar Teemusk; Ülo Mander


Environmental Science and Pollution Research | 2015

The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands

Ülo Mander; Martin Maddison; Kaido Soosaar; Alar Teemusk; Arno Kanal; Veiko Uri; Jaak Truu


Ecological Engineering | 2015

The impact of a pulsing water table on wastewater purification and greenhouse gas emission in a horizontal subsurface flow constructed wetland

Ülo Mander; Martin Maddison; Kaido Soosaar; Helen Koger; Alar Teemusk; Jaak Truu; Reinhard Well; Mathieu Sebilo


Biogeosciences | 2016

Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area

Järvi Järveoja; Matthias Peichl; Martin Maddison; Kaido Soosaar; Kai Vellak; Edgar Karofeld; Alar Teemusk; Ülo Mander

Collaboration


Dive into the Alar Teemusk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge