Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alastair Basden is active.

Publication


Featured researches published by Alastair Basden.


Applied Optics | 2010

Durham adaptive optics real-time controller

Alastair Basden; Deli Geng; Richard M. Myers; Eddy Younger

The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.


Optics Express | 2014

First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder

Gaetano Sivo; Caroline Kulcsár; Jean-Marc Conan; Henri-François Raynaud; Eric Gendron; Alastair Basden; Fabrice Vidal; Tim Morris; Cyril Petit; Damien Gratadour; Olivier J. F. Martin; Z. Hubert; A. Sevin; Denis Perret; Fanny Chemla; Gerard Rousset; N. A. Dipper; Gordon Talbot; Eddy Younger; Richard M. Myers; David Henry; Stephen Todd; David Atkinson; Colin Dickson; Andy Longmore

Adaptive optics provides real time correction of wavefront disturbances on ground based telescopes. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope. The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data, thus validating the strategy retained on the instrument SPHERE at the VLT.


Applied Optics | 2007

Durham extremely large telescope adaptive optics simulation platform

Alastair Basden; T. Butterley; Richard M. Myers; Richard Wilson

Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.


Proceedings of SPIE | 2008

CANARY: the on-sky NGS/LGS MOAO demonstrator for EAGLE

Richard M. Myers; Z. Hubert; Tim Morris; Eric Gendron; N. A. Dipper; A. Kellerer; Stephen J. Goodsell; Gerard Rousset; Eddy Younger; Alastair Basden; Fanny Chemla; C. Dani Guzman; Thierry Fusco; Deli Geng; Brice Le Roux; Mark A. Harrison; Andrew J. Longmore; Laura K. Young; Fabrice Vidal; Alan H. Greenaway

EAGLE is a multi-object 3D spectroscopy instrument currently under design for the 42-metre European Extremely Large Telescope (E-ELT). Precise requirements are still being developed, but it is clear that EAGLE will require (~100 x 100 actuator) adaptive optics correction of ~20 - 60 spectroscopic subfields distributed across a ~5 arcminute diameter field of view. It is very likely that LGS will be required to provide wavefront sensing with the necessary sky coverage. Two alternative adaptive optics implementations are being considered, one of which is Multi-Object Adaptive Optics (MOAO). In this scheme, wavefront tomography is performed using a set of LGS and NGS in either a completely open-loop manner, or in a configuration that is only closed-loop with respect to only one DM, probably the adaptive M4 of the E-ELT. The fine wavefront correction required for each subfield is then applied in a completely open-loop fashion by independent DMs within each separate optical relay. The novelty of this scheme is such that on-sky demonstration is required prior to final construction of an E-ELT instrument. The CANARY project will implement a single channel of an MOAO system on the 4.2m William Herschel Telescope. This will be a comprehensive demonstration, which will be phased to include pure NGS, low-order NGS-LGS and high-order woofer-tweeter NGS-LGS configurations. The LGSs used for these demonstrations will be Rayleigh systems, where the variable range-gate height and extension can be used to simulate many of the LGS effects on the E-ELT. We describe the requirements for the various phases of MOAO demonstration, the corresponding CANARY configurations and capabilities and the current conceptual designs of the various subsystems.


Monthly Notices of the Royal Astronomical Society | 2015

Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy

Robert J. Harris; David Guillaume MacLachlan; Debaditya Choudhury; Tim Morris; Eric Gendron; Alastair Basden; Graeme Brown; Jeremy R. Allington-Smith; Robert R. Thomson

The spectral resolution of a dispersive spectrograph is dependent on the width of the entrance slit. This means that astronomical spectrographs trade-off throughput with spectral resolving power. Recently, optical guided-wave transitions known as photonic lanterns have been proposed to circumvent this trade-off, by enabling the efficient reformatting of multimode light into a pseudo-slit which is highly multimode in one axis, but diffraction-limited in the other. Here, we demonstrate the successful reformatting of a telescope point spread function into such a slit using a three-dimensional integrated optical waveguide device, which we name the photonic dicer. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and light centred at 1530 nm with a 160 nm full width at half-maximum, the device shows a transmission of between 10 and 20 per cent depending upon the type of AO correction applied. Most of the loss is due to the overfilling of the input aperture in poor and moderate seeing. Taking this into account, the photonic device itself has a transmission of 57 ± 4 per cent. We show how a fully-optimized device can be used with AO to provide efficient spectroscopy at high spectral resolution.


Monthly Notices of the Royal Astronomical Society | 2016

Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

Alastair Basden; David Atkinson; Nazim Ali Bharmal; Urban Bitenc; M. Brangier; T. Buey; T. Butterley; Diego Cano; Fanny Chemla; Paul J. Clark; M. Cohen; Jean-Marc Conan; F. J. de Cos; Colin Dickson; N. A. Dipper; Colin N. Dunlop; Philippe Feautrier; T. Fusco; J.-L. Gach; Eric Gendron; Deli Geng; Stephen J. Goodsell; Damien Gratadour; Alan H. Greenaway; Andrés Guesalaga; C. D. Guzman; David H. Henry; Daniel Hölck; Z. Hubert; Jean-Michel Huet

Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.


Monthly Notices of the Royal Astronomical Society | 2013

Monte-Carlo simulation of ELT scale multi-object adaptive optics deformable mirror requirements and tolerances

Alastair Basden; Nazim Ali Bharmal; Richard M. Myers; Simon L. Morris; Tim Morris

Multi-object adaptive optics (MOAO) has been demonstrated by the CANARY instrument on the William Herschel Telescope. However, for proposed MOAO systems on the next generation Extremely Large Telescopes, such as EAGLE, many challenges remain. Here we investigate requirements that MOAO operation places on deformable mirrors (DMs) using a full end-to-end Monte-Carlo AO simulation code. By taking into consideration a prior global ground-layer (GL) correction, we show that actuator densit y for the MOAO DMs can be reduced with little performance loss. We note that this redu ction is only possible with the addition of a GL DM, whose order is greater than or equal to that of the original MOAO mirrors. The addition of a GL DM of lesser order does not affect system performance (if tip/tilt star sharpening is ignored). We also quantify the maximum mechanical DM stroke requirements (3.5� m desired) and provide tolerances for the DM alignment accuracy, both lateral (to within an eighth of a sub-aperture) and rotational (to within 0.2 ◦ ). By presenting results over a range of laser guide star asterism diameters, we ensure that these results are equally applicable for laser tomographic AO systems. We provide the opportunity for significant cost savings to be made in the implementation of MOAO systems, resulting from the lower requirement for DM actuator density.


Applied Optics | 2010

Considerations for EAGLE from Monte Carlo adaptive optics simulation

Alastair Basden; Richard M. Myers; T. Butterley

The EAGLE instrument for the European Extremely Large Telescope is a multi-object integral field unit spectrograph that uses a multi-object adaptive optics (AO) system for wavefront correction of interesting lines of sight. We present a Monte Carlo AO simulation package that has been used to model the performance of EAGLE, and provide results, including comparisons with an analytical code. These results include an investigation of the performance of compressed reconstructor representations that have the potential to significantly reduce the complexity of a real-time control system when implemented.


Monthly Notices of the Royal Astronomical Society | 2004

Low light level CCDs and visibility parameter estimation

Alastair Basden; Christopher A. Haniff

Recently, low light level charge-coupled devices (L3CCDs) capable of on-chip gain have been developed, leading to subelectron effective readout noise, allowing for the detection of single photon events. Optical interferometry usually requires the detection of faint signals at high speed and so L3CCDs are an obvious choice for these applications. Here we analyse the effect that using an L3CCD has on visibility parameter estimation (amplitude and triple product phase), including situations where the L3CCD raw output is processed in an attempt to reduce the effect of stochastic multiplication noise introduced by the on-chip gain process. We establish that under most conditions, fringe parameters are estimated accurately, whilst at low light levels, a bias correction which we determine here may need to be applied to the estimate of fringe visibility amplitude. These results show that L3CCDs are potentially excellent detectors for astronomical interferometry at optical wavelengths.


Astronomy and Astrophysics | 2014

Analysis of on-sky MOAO performance of CANARY using natural guide stars

Fabrice Vidal; Eric Gendron; Gerard Rousset; Tim Morris; Alastair Basden; Richard M. Myers; M. Brangier; Fanny Chemla; N. A. Dipper; Damien Gratadour; David Henry; Z. Hubert; Andy Longmore; Olivier R. Martin; Gordon Talbot; Eddy Younger

The first on-sky results obtained by CANARY, the multi-object adaptive optics (MOAO) demonstrator, are analysed. The data were recorded at the William Herschel Telescope, at the end of September 2010. We describe the command and calibrations algorithms used during the run and present the observing conditions. The processed data are MOAO-loop engaged or disengaged slopes buffers, comprising the synchronised measurements of the four natural guide stars (NGS) wavefront sensors running in parallel, and near infrared (IR) images. We describe the method we use to establish the error budget of CANARY. We are able to evaluate the tomographic and the open loop errors, having median values around 216 nm and 110 nm respectively. In addition, we identify an unexpected residual quasi-static field aberration term of mean value 110 nm. We present the detailed error budget analysed for three sets of data for three different asterisms. We compare the experimental budgets with the numerically simulated ones and demonstrate a good agreement. We find also a good agreement between the computed error budget from the slope buffers and the measured Strehl ratio on the IR images, ranging between 10% and 20% at 1530 nm. These results make us confident in our ability to establish the error budget of future MOAO instruments.

Collaboration


Dive into the Alastair Basden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Vidal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard Rousset

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Damien Gratadour

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanny Chemla

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge