Alastair R. Harborne
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alastair R. Harborne.
Nature | 2004
Peter J. Mumby; Alasdair J. Edwards; J. Ernesto Arias-González; Kenyon C. Lindeman; Paul G. Blackwell; Angela Gall; Malgosia I. Gorczynska; Alastair R. Harborne; Claire L. Pescod; Henk Renken; Colette C. C. Wabnitz; Ghislane Llewellyn
Mangrove forests are one of the worlds most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Peter J. Mumby; Alastair R. Harborne; Jodene Williams; Carrie V. Kappel; Daniel R. Brumbaugh; Fiorenza Micheli; Katherine E. Holmes; Craig P. Dahlgren; Claire B. Paris; Paul G. Blackwell
Reduced fishing pressure and weak predator–prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat.
PLOS ONE | 2010
Peter J. Mumby; Alastair R. Harborne
The fisheries and biodiversity benefits of marine reserves are widely recognised but there is mounting interest in exploiting the importance of herbivorous fishes as a tool to help ecosystems recover from climate change impacts. This approach might be particularly suitable for coral reefs, which are acutely threatened by climate change, yet the trophic cascades generated by reserves are strong enough that they might theoretically enhance the rate of coral recovery after disturbance. However, evidence for reserves facilitating coral recovery has been lacking. Here we investigate whether reductions in macroalgal cover, caused by recovery of herbivorous parrotfishes within a reserve, have resulted in a faster rate of coral recovery than in areas subject to fishing. Surveys of ten sites inside and outside a Bahamian marine reserve over a 2.5-year period demonstrated that increases in coral cover, including adjustments for the initial size-distribution of corals, were significantly higher at reserve sites than those in non-reserve sites. Furthermore, macroalgal cover was significantly negatively correlated with the change in total coral cover over time. Recovery rates of individual species were generally consistent with small-scale manipulations on coral-macroalgal interactions, but also revealed differences that demonstrate the difficulties of translating experiments across spatial scales. Size-frequency data indicated that species which were particularly affected by high abundances of macroalgae outside the reserve had a population bottleneck restricting the supply of smaller corals to larger size classes. Importantly, because coral cover increased from a heavily degraded state, and recovery from such states has not previously been described, similar or better outcomes should be expected for many reefs in the region. Reducing herbivore exploitation as part of an ecosystem-based management strategy for coral reefs appears to be justified.
Biological Conservation | 1999
Peter J. Mumby; Alastair R. Harborne
Most coastal habitat mapping is conducted on an ad hoc basis with little consistency in terminology and ambiguous documentation. These limitations obstruct interpretation and integration of maps for coral reef science and management, particularly at regional (international) scales where standardisation is urgently required. This paper advocates an objective, systematic approach to habitat classification which couples coastal geomorphology and benthic cover. Benthic classes are derived and described objectively using agglomerative hierarchical classification of field data and Similarity Percentage analysis of resulting clusters. The scheme has a hierarchical structure to accommodate various user requirements, variable availability of data, and the spatial scales of most remote sensing methods. We illustrate our approach with a scheme based on extensive field data from the Turks and Caicos Islands and Belize. While the scheme will not represent all habitats of the Caribbean, it provides a useful basis for a regional classification and illustrates the systematic approach. Standardised regional maps of coastal habitats will help development of predictive models of coral metapopulation dynamics, aid the identification of larval source and sink areas, and facilitate strategic transboundary planning of protected areas to maximise species, habitat, and ecosystem conservation. Habitats might also be interpreted to reflect ecosystem processes such as productivity and trophic guild structure, thereby allowing the ecosystem function to be examined at larger scales. ©
Conservation Biology | 2008
Peter J. Mumby; Kenneth Broad; Daniel R. Brumbaugh; Craig P. Dahlgren; Alastair R. Harborne; Alan Hastings; Katherine E. Holmes; Carrie V. Kappel; Fiorenza Micheli; James N. Sanchirico
Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.
PLOS ONE | 2011
Peter J. Mumby; Alastair R. Harborne; Daniel R. Brumbaugh
Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the regions most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.
The Journal of Experimental Biology | 2010
Shaun K. Wilson; Mehdi Adjeroud; David R. Bellwood; Michael L. Berumen; David J. Booth; Y. Marie Bozec; Pascale Chabanet; Alistair J. Cheal; Joshua E. Cinner; Martial Depczynski; David A. Feary; Monica Gagliano; Nicholas A. J. Graham; A. R. Halford; Benjamin S. Halpern; Alastair R. Harborne; Andrew S. Hoey; Sally J. Holbrook; Geoffrey P. Jones; M. Kulbiki; Yves Letourneur; T. L. de Loma; Tim R. McClanahan; Mark I. McCormick; Mark G. Meekan; Peter J. Mumby; Philip L. Munday; Marcus C. Öhman; Morgan S. Pratchett; Bernhard Riegl
SUMMARY Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.
Ecological Applications | 2008
Alastair R. Harborne; Peter J. Mumby; Carrie V. Kappel; Craig P. Dahlgren; Fiorenza Micheli; Katherine E. Holmes; Daniel R. Brumbaugh
Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the techniques efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.
Global Change Biology | 2015
Alice Rogers; Alastair R. Harborne; Christopher J. Brown; Yves Marie Bozec; Carolina Castro; Iliana Chollett; Karlo Hock; Cheryl Knowland; Alyssa Marshell; Juan Carlos Ortiz; Tries Razak; George Roff; Jimena Samper-Villarreal; Megan I. Saunders; Nicholas H. Wolff; Peter J. Mumby
Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Chris T. Perry; Michael A. Salter; Alastair R. Harborne; Stephen F. Crowley; Howard L. Jelks; Richard Wilson
Carbonate mud is a major constituent of recent marine carbonate sediments and of ancient limestones, which contain unique records of changes in ocean chemistry and climate shifts in the geological past. However, the origin of carbonate mud is controversial and often problematic to resolve. Here we show that tropical marine fish produce and excrete various forms of precipitated (nonskeletal) calcium carbonate from their guts (“low” and “high” Mg-calcite and aragonite), but that very fine-grained (mostly < 2 μm) high Mg-calcite crystallites (i.e., MgCO3) are their dominant excretory product. Crystallites from fish are morphologically diverse and species-specific, but all are unique relative to previously known biogenic and abiotic sources of carbonate within open marine systems. Using site specific fish biomass and carbonate excretion rate data we estimate that fish produce ∼6.1 × 106 kg CaCO3/year across the Bahamian archipelago, all as mud-grade (the < 63 μm fraction) carbonate and thus as a potential sediment constituent. Estimated contributions from fish to total carbonate mud production average ∼14% overall, and exceed 70% in specific habitats. Critically, we also document the widespread presence of these distinctive fish-derived carbonates in the finest sediment fractions from all habitat types in the Bahamas, demonstrating that these carbonates have direct relevance to contemporary carbonate sediment budgets. Fish thus represent a hitherto unrecognized but significant source of fine-grained carbonate sediment, the discovery of which has direct application to the conceptual ideas of how marine carbonate factories function both today and in the past.