Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alastair W. Poole is active.

Publication


Featured researches published by Alastair W. Poole.


Blood Reviews | 2015

Platelet secretion: From haemostasis to wound healing and beyond

Ewelina M. Golebiewska; Alastair W. Poole

Upon activation, platelets secrete more than 300 active substances from their intracellular granules. Platelet dense granule components, such as ADP and polyphosphates, contribute to haemostasis and coagulation, but also play a role in cancer metastasis. α-Granules contain multiple cytokines, mitogens, pro- and anti-inflammatory factors and other bioactive molecules that are essential regulators in the complex microenvironment of the growing thrombus but also contribute to a number of disease processes. Our understanding of the molecular mechanisms of secretion and the genetic regulation of granule biogenesis still remains incomplete. In this review we summarise our current understanding of the roles of platelet secretion in health and disease, and discuss some of the hypotheses that may explain how platelets may control the release of its many secreted components in a context-specific manner, to allow platelets to play multiple roles in health and disease.


Journal of Clinical Investigation | 2009

PKCα regulates platelet granule secretion and thrombus formation in mice

Olga Konopatskaya; Karen Gilio; Matthew T. Harper; Yan Zhao; Judith M. E. M. Cosemans; Zubair A. Karim; Sidney W. Whiteheart; Jeffery D. Molkentin; Paul Verkade; Steve P. Watson; Johan W. M. Heemskerk; Alastair W. Poole

Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.


Trends in Pharmacological Sciences | 2010

Protein kinase Cα: disease regulator and therapeutic target

Olga Konopatskaya; Alastair W. Poole

Protein kinase Cα (PKCα) is a member of the AGC (which includes PKD, PKG and PKC) family of serine/threonine protein kinases that is widely expressed in mammalian tissues. It is closely related in structure, function and regulation to other members of the protein kinase C family, but has specific functions within the tissues in which it is expressed. There is substantial recent evidence, from gene knockout studies in particular, that PKCα activity regulates cardiac contractility, atherogenesis, cancer and arterial thrombosis. Selective targeting of PKCα therefore has potential therapeutic value in a wide variety of disease states, although will be technically complicated by the ubiquitous expression and multiple functions of the molecule.


Journal of Thrombosis and Haemostasis | 2010

Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation

Matthew T. Harper; Alastair W. Poole

Summary.  Platelet activation is a complex balance of positive and negative signaling pathways. The protein kinase C (PKC) family is a major regulator of platelet granule secretion, integrin activation, aggregation, spreading and procoagulant activity. As broad‐spectrum PKC inhibitors reduce secretion and aggregation, the PKC family is generally considered to be a positive regulator of platelet activation. However, the individual members of the PKC family that are expressed in platelets are regulated in different ways, and an increasing body of evidence indicates that they have distinct, and often opposing, roles. Many of the recent advances in understanding the contributions of individual PKC isoforms have come from mouse gene knockout studies. PKCα, a classic isoform, is an essential positive regulator of granule secretion and thrombus formation, both in vitro and in vivo. Mice lacking PKCα show much reduced thrombus formation in vivo but do not have a bleeding defect, suggesting that PKCα could be an attractive antithrombotic target. Important, apparently non‐redundant, roles, both positive and negative, for the novel PKC isoforms δ, θ and ε in granule secretion have also been proposed, indicating highly complex regulation of this essential process. Similarly, PKCβ, PKCδ and PKCθ have non‐redundant roles in platelet spreading, as absence of either PKCβ or PKCθ reduces spreading, whereas PKCδ negatively regulates filopodial formation. This negative signaling by PKCδ may reduce platelet aggregation and so restrict thrombus formation. In this review, we discuss the current understanding of the regulation and functions of individual PKC isoforms in platelet activation and thrombus formation.


Traffic | 2006

Distinct Clathrin‐Coated Pits Sort Different G Protein‐Coupled Receptor Cargo

Stuart J. Mundell; Jiansong Luo; Jeffrey L. Benovic; Pamela B. Conley; Alastair W. Poole

Upon activation, many G protein‐coupled receptors (GPCRs) internalize by clathrin‐mediated endocytosis and are subsequently sorted to undergo recycling or lysosomal degradation. Here we observe that sorting can take place much earlier than previously thought, by entry of different GPCRs into distinct populations of clathrin‐coated pit (CCP). These distinct populations were revealed by analysis of two purinergic GPCRs, P2Y1 and P2Y12, which enter two populations of CCPs in a mutually exclusive manner. The mechanisms underlying early GPCR sorting involve differential kinase‐dependent processes because internalization of P2Y12 is mediated by GPCR kinases (GRKs) and arrestin, whereas P2Y1 internalization is GRK‐ and arrestin‐independent but requires protein kinase C. Importantly, the β2 adrenoceptor which also internalizes in a GRK‐dependent manner also traffics exclusively to P2Y12‐containing CCPs. Our data therefore reveal distinct populations of CCPs that sort GPCR cargo at the plasma membrane using different kinase‐dependent mechanisms.


Journal of Biological Chemistry | 2010

Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen

Karen Gilio; Matthew T. Harper; Judith M. E. M. Cosemans; Olga Konopatskaya; Imke C. A. Munnix; Lenneke Prinzen; Michael Leitges; Qinghang Liu; Jeffery D. Molkentin; Johan W. M. Heemskerk; Alastair W. Poole

Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.


Free Radical Biology and Medicine | 2013

Antiplatelet effects of dietary nitrate in healthy volunteers: involvement of cGMP and influence of sex.

Shanti Velmurugan; Vikas Kapil; Suborno M. Ghosh; Sheridan Davies; Andrew McKnight; Zainab Aboud; Rayomand S. Khambata; Andrew J. Webb; Alastair W. Poole; Amrita Ahluwalia

Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.


Molecular Pharmacology | 2006

Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function.

Stuart J. Mundell; Matthew L. Jones; Adam R. Hardy; Johanna F. Barton; Stephanie M. Beaucourt; Pamela B. Conley; Alastair W. Poole

ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), P2Y1 and P2Y12. We have shown previously that the receptors are functionally desensitized, in a homologous manner, by distinct kinase-dependent mechanisms in which P2Y1 is regulated by protein kinase C (PKC) and P2Y12 by G protein-coupled receptor kinases. In this study, we addressed whether different PKC isoforms play different roles in regulating the trafficking and activity of these two GPCRs. Expression of PKCα and PKCδ dominant-negative mutants in 1321N1 cells revealed that both isoforms regulated P2Y1 receptor signaling and trafficking, although only PKCδ was capable of regulating P2Y12, in experiments in which PKC was directly activated by the phorbol ester phorbol 12-myristate 13-acetate (PMA). These results were paralleled in human platelets, in which PMA reduced subsequent ADP-induced P2Y1 and P2Y12 receptor signaling. PKC isoform-selective inhibitors revealed that novel, but not conventional, isoforms of PKC regulate P2Y12 function, whereas both novel and classic isoforms regulate P2Y1 activity. It is also noteworthy that we studied receptor internalization in platelets by a radioligand binding approach showing that both receptors internalize rapidly in these cells. ADP-induced P2Y1 receptor internalization is attenuated by PKC inhibitors, whereas that of the P2Y12 receptor is unaffected. Both P2Y1 and P2Y12 receptors can also undergo PMA-stimulated internalization, and here again, novel but not classic PKCs regulate P2Y12, whereas both novel and classic isoforms regulate P2Y1 internalization. This study therefore is the first to reveal distinct roles for PKC isoforms in the regulation of platelet P2Y receptor function and trafficking.


Biochemical Journal | 2006

Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets

James K. T. Wentworth; Giordano Pula; Alastair W. Poole

VASP (vasodilator-stimulated phosphoprotein) is an actin- and profilin-binding protein that is expressed in platelets at high levels and plays a major role in negatively regulating secretory and adhesive events in these cells. VASP is a major substrate for cAMP- and cGMP-regulated protein kinases and it has been shown to be directly phosphorylated on Ser157 by PKC (protein kinase C). In the present paper, we show that, in human platelets, VASP is phosphorylated by PKC on Ser157, but not Ser239, in response to phorbol ester stimulation, in a manner blocked by the PKC inhibitor BIM I (bisindolylmaleimide I). In response to thrombin, VASP was also phosphorylated on Ser157, but this response was only partially inhibited by BIM I, indicating PKC-dependent and -independent pathways to VASP phosphorylation by thrombin. Using inhibitors, we have ruled out the possibility that the PKC-independent pathway acts through guanylate cyclase generation of cGMP, or through a phosphoinositide 3-kinase-dependent kinase. Inhibition of Rho kinase, however, substantially reduced Ser157 VASP phosphorylation, and its effects were additive with BIM I. This implicates Rho kinase and PKC as the major kinases that phosphorylate VASP Ser157 in response to thrombin in platelets.


Journal of Biological Chemistry | 2013

Dual Regulation of Glycogen Synthase Kinase 3 (GSK3)α/β by Protein Kinase C (PKC)α and Akt Promotes Thrombin-mediated Integrin αIIbβ3 Activation and Granule Secretion in Platelets

Samantha Frances Moore; Marion T.J. van den Bosch; Roger W. Hunter; Kei Sakamoto; Alastair W. Poole; Ingeborg Hers

Background: The constitutively active kinase GSK3β is a negative regulator of thrombin-stimulated platelet function. Results: Interfering with PKCα and Akt blocked thrombin-mediated GSK3α/β phosphorylation and reduced platelet function. Conclusion: PKCα and Akt phosphorylate GSK3α/β resulting in reduced GSK3α/β activity and increased thrombin-mediated platelet function. Significance: This study shows a novel mechanism by which GSK3α/β is regulated and contributes to platelet function. Glycogen synthase kinase-3 is a Ser/Thr kinase, tonically active in resting cells but inhibited by phosphorylation of an N-terminal Ser residue (Ser21 in GSK3α and Ser9 in GSK3β) in response to varied external stimuli. Recent work suggests that GSK3 functions as a negative regulator of platelet function, but how GSK3 is regulated in platelets has not been examined in detail. Here, we show that early thrombin-mediated GSK3 phosphorylation (0–30 s) was blocked by PKC inhibitors and largely absent in platelets from PKCα knock-out mice. In contrast, late (2–5 min) GSK3 phosphorylation was dependent on the PI3K/Akt pathway. Similarly, early thrombin-mediated inhibition of GSK3 activity was blocked in PKCα knock-out platelets, whereas the Akt inhibitor MK2206 reduced late thrombin-mediated GSK3 inhibition and largely prevented GSK3 inhibition in PKCα knock-out platelets. More importantly, GSK3 phosphorylation contributes to platelet function as knock-in mice where GSK3α Ser21 and GSK3β Ser9 were mutated to Ala showed a significant reduction in PAR4-mediated platelet aggregation, fibrinogen binding, and P-selectin expression, whereas the GSK3 inhibitor CHIR99021 enhanced these responses. Together, these results demonstrate that PKCα and Akt modulate platelet function by phosphorylating and inhibiting GSK3α/β, thereby relieving the negative effect of GSK3α/β on thrombin-mediated platelet activation.

Collaboration


Dive into the Alastair W. Poole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge