Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alba Ruiz is active.

Publication


Featured researches published by Alba Ruiz.


Journal of Immunology | 2014

Cell Cycle Control and HIV-1 Susceptibility Are Linked by CDK6-Dependent CDK2 Phosphorylation of SAMHD1 in Myeloid and Lymphoid Cells

Eduardo Pauls; Alba Ruiz; Roger Badia; Marc Permanyer; Albert Gubern; Eva Riveira-Muñoz; Javier Torres-Torronteras; Mar Álvarez; Beatriz Mothe; Christian Brander; Manel Crespo; Luis Menéndez-Arias; Bonaventura Clotet; Oliver T. Keppler; Ramon Martí; Francesc Posas; Ester Ballana; José A. Esté

Proliferating cells are preferentially susceptible to infection by retroviruses. Sterile α motif and HD domain–containing protein-1 (SAMHD1) is a recently described deoxynucleotide phosphohydrolase controlling the size of the intracellular deoxynucleotide triphosphate (dNTP) pool, a limiting factor for retroviral reverse transcription in noncycling cells. Proliferating (Ki67+) primary CD4+ T cells or macrophages express a phosphorylated form of SAMHD1 that corresponds with susceptibility to infection in cell culture. We identified cyclin-dependent kinase (CDK) 6 as an upstream regulator of CDK2 controlling SAMHD1 phosphorylation in primary T cells and macrophages susceptible to infection by HIV-1. In turn, CDK2 was strongly linked to cell cycle progression and coordinated SAMHD1 phosphorylation and inactivation. CDK inhibitors specifically blocked HIV-1 infection at the reverse transcription step in a SAMHD1-dependent manner, reducing the intracellular dNTP pool. Our findings identify a direct relationship between control of the cell cycle by CDK6 and SAMHD1 activity, which is important for replication of lentiviruses, as well as other viruses whose replication may be regulated by intracellular dNTP availability.


Proceedings of the National Academy of Sciences of the United States of America | 2014

p21 regulates the HIV-1 restriction factor SAMHD1

Eduardo Pauls; Alba Ruiz; Eva Riveira-Muñoz; Marc Permanyer; Roger Badia; Bonaventura Clotet; Oliver T. Keppler; Ester Ballana; José A. Esté

Allouch et al. (1) have shown that CDKN1A (p21) restricts HIV-1 replication in monocyte-derived macrophages (MDM) by controlling the expression of the ribonucleotide reductase subunit R2 (RNR2) of the ribonucleotide reductase enzyme that, in turn, controls the intracellular deoxynucleotide (dNTP) pool required for HIV-1 reverse transcription. dNTP levels are also tightly controlled by the dNTP triphosphohydrolase SAM domain and HD domain-containing protein 1 (SAMHD1), which is constitutively expressed in myeloid and lymphoid cells and is counteracted by the lentiviral virus protein x (Vpx) (reviewed in ref. 2). SAMHD1 is deactivated in proliferating cells by a mechanism that requires phosphorylation of SAMHD1 (3). Allouch et al. (1) conclude that p21-driven HIV-1 restriction in macrophages is independent of SAMHD1 because ( i ) p21 did not affect SAMHD1 expression and ( ii ) Vpx did not affect p21 expression. Here, we show that M-CSF induces monocyte differentiation into macrophages and cell proliferation (Fig. 1 A ), and RNA interference of p21 leads to an increase in the number of proliferating cells (Fig. 1 B ). Macrophages become susceptible to HIV-1 replication (Fig. 1 C ) because SAMHD1 is inactivated as measured by specific SAMHD1 phosphorylation at residue T592 (Fig. 1 D ). Delivery of simian immunodeficiency virus (SIV) mac Vpx-induced SAMHD1 degradation (Fig. 1 E ) and subsequently increased virus infection (Fig. 1 F ) (2, 4, 5). Of importance, siRNA-induced down-regulation of p21 (Fig. 2 A ) strongly enhanced the phosphorylation of SAMHD1 (Fig. 2 B and C ), followed by an increase in … [↵][1]2To whom correspondence should be addressed. E-mail: jaeste{at}irsicaixa.es. [1]: #xref-corresp-1-1


Journal of Immunology | 2013

Restriction of HIV-1 Replication in Primary Macrophages by IL-12 and IL-18 through the Upregulation of SAMHD1

Eduardo Pauls; Esther Jimenez; Alba Ruiz; Marc Permanyer; Ester Ballana; H. Costa; Rute Nascimiento; R. Michael E. Parkhouse; Ruth Peña; Eva Riveiro-Muñoz; Miguel Angel Martínez; Bonaventura Clotet; José A. Esté; Margarida Bofill

Monocyte-derived macrophages (MDM) can polarize into different subsets depending on the environment and the activation signal to which they are submitted. Differentiation into macrophages allows HIV-1 strains to infect cells of the monocytic lineage. In this study, we show that culture of monocytes with a combination of IL-12 and IL-18 led to macrophage differentiation that was resistant to HIV-1 infection. In contrast, M-CSF–derived MDM were readily infected by HIV-1. When monocytes were differentiated in the presence of M-CSF and then further treated with IL-12/IL-18, cells became resistant to infection. The restriction on HIV-1 replication was not dependent on virus entry or coreceptor expression, as vesicular stomatitis virus-pseudotyped HIV-1 replication was also blocked by IL-12/IL-18. The HIV-1 restriction factor sterile α motif and HD domain–containing protein-1 (SAMHD1) was significantly overexpressed in IL-12/IL-18 MDM compared with M-CSF MDM, and degradation of SAMHD1 by RNA interference or viral-like particles carrying the lentiviral protein Vpx restored HIV-1 infectivity of IL-12/IL-18 MDM. SAMHD1 overexpression induced by IL-12/IL-18 was not dependent on IFN-γ. Thus, we conclude that IL-12 and IL-18 may contribute to the response against HIV-1 infection through the induction of restriction factors such as SAMHD1.


Journal of Virology | 2012

Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer

Marc Permanyer; Ester Ballana; Alba Ruiz; Roger Badia; Eva Riveira-Muñoz; Encarna Gonzalo; Bonaventura Clotet; José A. Esté

ABSTRACT Cell-to-cell transmission of HIV has been proposed as a mechanism contributing to virus escape to the action of antiretrovirals and a mode of HIV persistence during antiretroviral therapy. Here, cocultures of infected HIV-1 cells with primary CD4+ T cells or lymphoid cells were used to evaluate virus transmission and the effect of known antiretrovirals. Transfer of HIV antigen from infected to uninfected cells was resistant to the reverse transcriptase inhibitors (RTIs) zidovudine (AZT) and tenofovir, but was blocked by the attachment inhibitor IgGb12. However, quantitative measurement of viral DNA production demonstrated that all anti-HIV agents blocked virus replication with similar potency to cell-free virus infections. Cell-free and cell-associated infections were equally sensitive to inhibition of viral replication when HIV-1 long terminal repeat (LTR)-driven green fluorescent protein (GFP) expression in target cells was measured. However, detection of GFP by flow cytometry may incorrectly estimate the efficacy of antiretrovirals in cell-associated virus transmission, due to replication-independent Tat-mediated LTR transactivation as a consequence of cell-to-cell events that did not occur in short-term (48-h) cell-free virus infections. In conclusion, common markers of virus replication may not accurately correlate and measure infectivity or drug efficacy in cell-to-cell virus transmission. When accurately quantified, active drugs blocked proviral DNA and virus replication in cell-to-cell transmission, recapitulating the efficacy of antiretrovirals in cell-free virus infections and in vivo.


AIDS | 2014

Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity.

Eduardo Pauls; Roger Badia; Javier Torres-Torronteras; Alba Ruiz; Marc Permanyer; Eva Riveira-Munoz; Bonaventura Clotet; Ramon Martí; Ester Ballana; José A. Esté

Background:Sterile &agr; motif and HD domain-containing protein-1 (SAMHD1) inhibits HIV-1 reverse transcription by decreasing the pool of intracellular deoxynucleotides. SAMHD1 is controlled by cyclin-dependent kinase (CDK)-mediated phosphorylation. However, the exact mechanism of SAMHD1 regulation in primary cells is unclear. We explore the effect of palbociclib, a CDK6 inhibitor, in HIV-1 replication. Methods:Human primary monocytes were differentiated into macrophages with monocyte-colony stimulating factor and CD4+ T lymphocytes stimulated with phytohaemagglutinin (PHA)/interleukin-2. Cells were treated with palbociclib and then infected with a Green fluorescent protein-expressing HIV-1 or R5 HIV-1 BaL. Viral DNA was measured by quantitative PCR and infection assessed by flow cytometry. Deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. Results:Pan-CDK inhibitors AT7519, roscovitine and purvalanol A reduced SAMHD1 phosphorylation. HIV-1 replication was blocked by AT7519 (66.4 ± 3.8%; n = 4), roscovitine (47.3 ± 3.9%; n = 4) and purvalanol A (55.7 ± 15.7%; n = 4) at subtoxic concentrations. Palbociclib, a potent and selective CDK6 inhibitor, blocked SAMHD1 phosphorylation, intracellular dNTP levels, HIV-1 reverse transcription and HIV-1 replication in primary macrophages and CD4+ T lymphocytes. Notably, treatment of macrophages with palbociclib led to reduced CDK2 activation, measured as the phosphorylation of the T-loop at the Thr160. The antiviral effect was lost when SAMHD1 was degraded by Vpx, providing further evidence for a role of SAMHD1 in mediating the antiretroviral effect. Conclusions:Our results indicate that SAMHD1-mediated HIV-1 restriction is controlled by CDK as previously suggested but point to a preferential role for CDK2 and CDK6 as mediators of SAMHD1 activation. Our study provides a new signaling pathway susceptible for the development of new therapeutic approaches against HIV-1 infection.


Antimicrobial Agents and Chemotherapy | 2014

SAMHD1 Specifically Affects the Antiviral Potency of Thymidine Analog HIV Reverse Transcriptase Inhibitors

Ester Ballana; Roger Badia; Gerard Terradas; Javier Torres-Torronteras; Alba Ruiz; Eduardo Pauls; Eva Riveira-Muñoz; Bonaventura Clotet; Ramon Martí; José A. Esté

ABSTRACT Sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase recently recognized as an antiviral factor that acts by depleting dNTP availability for viral reverse transcriptase (RT). SAMHD1 restriction is counteracted by the human immunodeficiency virus type 2 (HIV-2) accessory protein Vpx, which targets SAMHD1 for proteosomal degradation, resulting in an increased availability of dNTPs and consequently enhanced viral replication. Nucleoside reverse transcriptase inhibitors (NRTI), one of the most common agents used in antiretroviral therapy, compete with intracellular dNTPs as the substrate for viral RT. Consequently, SAMHD1 activity may be influencing NRTI efficacy in inhibiting viral replication. Here, a panel of different RT inhibitors was analyzed for their different antiviral efficacy depending on SAMHD1. Antiviral potency was measured for all the inhibitors in transformed cell lines and primary monocyte-derived macrophages and CD4+ T cells infected with HIV-1 with or without Vpx. No changes in sensitivity to non-NRTI or the integrase inhibitor raltegravir were observed, but for NRTI, sensitivity significantly changed only in the case of the thymidine analogs (AZT and d4T). The addition of exogenous thymidine mimicked the change in viral sensitivity observed after Vpx-mediated SAMHD1 degradation, pointing toward a differential effect of SAMHD1 activity on thymidine. Accordingly, sensitivity to AZT was also reduced in CD4+ T cells infected with HIV-2 compared to infection with the HIV-2ΔVpx strain. In conclusion, reduction of SAMHD1 levels significantly decreases HIV sensitivity to thymidine but not other nucleotide RT analog inhibitors in both macrophages and lymphocytes.


Journal of Antimicrobial Chemotherapy | 2014

Increased expression of SAMHD1 in a subset of HIV-1 elite controllers

Eva Riveira-Muñoz; Alba Ruiz; Eduardo Pauls; Marc Permanyer; Roger Badia; Beatriz Mothe; Manel Crespo; Bonaventura Clotet; Christian Brander; Ester Ballana; José A. Esté

OBJECTIVES SAMHD1 and the CDKN1A (p21) cyclin-dependent kinase inhibitor have been postulated to mediate HIV-1 restriction in CD4+ cells. We have shown that p21 affects HIV replication through its effect on SAMHD1. Thus, we aimed at evaluating the expression of SAMHD1 and p21 in different HIV+ phenotypic groups. PATIENTS AND METHODS We evaluated SAMHD1 and CDKN1A mRNA expression in CD4+ T cells from HIV+ individuals including elite controllers (n = 12), individuals who control HIV without the need for antiretroviral treatment, viraemic progressors (n = 10) and HIV-1 seronegative healthy donors (n = 14). Immunological variables were measured by flow cytometry. RESULTS We show that a subset of HIV+ elite controllers with lower T cell proliferation levels (Ki67+ cells) expressed higher SAMHD1 compared with healthy donors or viraemic progressors. Conversely, there was no difference in p21 expression before or after T cell activation with a bispecific CD3/CD8 antibody. CONCLUSIONS Our results suggest that SAMHD1 may play a role in controlling virus replication in HIV+ individuals and slow the rate of disease progression.


Cell Cycle | 2015

Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages

Alba Ruiz; Eduardo Pauls; Roger Badia; Javier Torres-Torronteras; Eva Riveira-Muñoz; Bonaventura Clotet; Ramon Martí; Ester Ballana; José A. Esté

Cyclins control the activation of cyclin-dependent kinases (CDK), which in turn, control the cell cycle and cell division. Intracellular availability of deoxynucleotides (dNTP) plays a fundamental role in cell cycle progression. SAM domain and HD domain-containing protein 1 (SAMHD1) degrades nucleotide triphosphates and controls the size of the dNTP pool. SAMHD1 activity appears to be controlled by CDK. Here, we show that knockdown of cyclin D3 a partner of CDK6 and E2 a partner of CDK2 had a major impact in SAMHD1 phosphorylation and inactivation and led to decreased dNTP levels and inhibition of HIV-1 at the reverse transcription step in primary human macrophages. The effect of cyclin D3 RNA interference was lost after degradation of SAMHD1 by HIV-2 Vpx, demonstrating the specificity of the mechanism. Cyclin D3 inhibition correlated with decreased activation of CDK2. Our results confirm the fundamental role of the CDK6-cyclin D3 pair in controlling CDK2-dependent SAMHD1 phosphorylation and dNTP pool in primary macrophages.


Journal of Biological Chemistry | 2014

Characterization of the Influence of Mediator Complex in HIV-1 Transcription

Alba Ruiz; Eduardo Pauls; Roger Badia; Eva Riveira-Muñoz; Bonaventura Clotet; Ester Ballana; José A. Esté

Background: The transcription Mediator complex was suggested to influence HIV infection, but a more accurate study is needed to define this contribution. Results: Nine Mediator subunits are implicated in early and late HIV transcription, although MED14 plays a major role. Conclusion: HIV transcription needs specific Mediator subunits interacting with HIV Tat. Significance: This work enables further studies on cofactors influencing HIV transcription. HIV-1 exploits multiple host proteins during infection. siRNA-based screenings have identified new proteins implicated in different pathways of the viral cycle that participate in a broad range of cellular functions. The human Mediator complex (MED) is composed of 28 elements and represents a fundamental component of the transcription machinery, interacting with the RNA polymerase II enzyme and regulating its ability to express genes. Here, we provide an evaluation of the MED activity on HIV replication. Knockdown of 9 out of 28 human MED proteins significantly impaired viral replication without affecting cell viability, including MED6, MED7, MED11, MED14, MED21, MED26, MED27, MED28, and MED30. Impairment of viral replication by MED subunits was at a post-integration step. Inhibition of early HIV transcripts was observed by siRNA-mediated knockdown of MED6, MED7, MED11, MED14, and MED28, specifically affecting the transcription of the nascent viral mRNA transactivation-responsive element. In addition, MED14 and MED30 were shown to have special relevance during the formation of unspliced viral transcripts (p < 0.0005). Knockdown of the selected MED factors compromised HIV transcription induced by Tat, with the strongest inhibitory effect shown by siMED6 and siMED14 cells. Co-immunoprecipitation experiments suggested physical interaction between MED14 and HIV-1 Tat protein. A better understanding of the mechanisms and factors controlling HIV-1 transcription is key to addressing the development of new strategies required to inhibit HIV replication or reactivate HIV-1 from the latent reservoirs.


ChemMedChem | 2013

Identification of Hck Inhibitors As Hits for the Development of Antileukemia and Anti-HIV Agents

Cristina Tintori; Ilaria Laurenzana; Francesco La Rocca; Federico Falchi; Fabio Carraro; Alba Ruiz; José A. Esté; Miroslava Kissova; Emmanuele Crespan; Giovanni Maga; Mariangela Biava; Chiara Brullo; Silvia Schenone; Maurizio Botta

Hematopoietic cell kinase (Hck) is a member of the Src family of non‐receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV‐1. Herein, structure‐based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in‐house library of pyrazolo[3,4‐d]pyrimidine derivatives, which were previously shown to be dual Abl and c‐Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell‐free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 μM, confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU‐812, and one compound was found to block HIV‐1 replication at sub‐toxic concentrations.

Collaboration


Dive into the Alba Ruiz's collaboration.

Top Co-Authors

Avatar

Bonaventura Clotet

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

José A. Esté

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ester Ballana

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Eduardo Pauls

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Roger Badia

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Eva Riveira-Muñoz

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marc Permanyer

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ramon Martí

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Beatriz Mothe

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Christian Brander

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge