Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albane Simon is active.

Publication


Featured researches published by Albane Simon.


PLOS ONE | 2010

Molecular Diagnosis of Neonatal Diabetes Mellitus Using Next-Generation Sequencing of the Whole Exome

Amélie Bonnefond; Emmanuelle Durand; Olivier Sand; Franck De Graeve; Sophie Gallina; Kanetee Busiah; Stéphane Lobbens; Albane Simon; Christine Bellanné-Chantelot; Louis Letourneau; Raphael Scharfmann; Jérôme Delplanque; Robert Sladek; Michel Polak; Martine Vaxillaire; Philippe Froguel

Background Accurate molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea drugs instead of insulin therapy. This diagnosis is currently based on Sanger sequencing of at least 42 PCR fragments from the KCNJ11, ABCC8, and INS genes. Here, we assessed the feasibility of using the next-generation whole exome sequencing (WES) for the NDM molecular diagnosis. Methodology/Principal Findings We carried out WES for a patient presenting with permanent NDM, for whom mutations in KCNJ11, ABCC8 and INS and abnormalities in chromosome 6q24 had been previously excluded. A solution hybridization selection was performed to generate WES in 76 bp paired-end reads, by using two channels of the sequencing instrument. WES quality was assessed using a high-resolution oligonucleotide whole-genome genotyping array. From our WES with high-quality reads, we identified a novel non-synonymous mutation in ABCC8 (c.1455G>C/p.Q485H), despite a previous negative sequencing of this gene. This mutation, confirmed by Sanger sequencing, was not present in 348 controls and in the patients mother, father and young brother, all of whom are normoglycemic. Conclusions/Significance WES identified a novel de novo ABCC8 mutation in a NDM patient. Compared to the current Sanger protocol, WES is a comprehensive, cost-efficient and rapid method to identify mutations in NDM patients. We suggest WES as a near future tool of choice for further molecular diagnosis of NDM cases, negative for chr6q24, KCNJ11 and INS abnormalities.


Diabetes | 2010

Insulin Gene Mutations Resulting in Early-Onset Diabetes: Marked Differences in Clinical Presentation, Metabolic Status, and Pathogenic Effect Through Endoplasmic Reticulum Retention

Gargi Meur; Albane Simon; Nasret Harun; Marie Virally; Aurélie Dechaume; Amélie Bonnefond; Sabrina Fetita; Andrei I. Tarasov; Pierre-Jean Guillausseau; Trine Welløv Boesgaard; Oluf Pedersen; Torben Hansen; Michel Polak; Jean François Gautier; Philippe Froguel; Guy A. Rutter; Martine Vaxillaire

OBJECTIVE Heterozygous mutations in the human preproinsulin (INS) gene are a cause of nonsyndromic neonatal or early-infancy diabetes. Here, we sought to identify INS mutations associated with maturity-onset diabetes of the young (MODY) or nonautoimmune diabetes in mid-adult life, and to explore the molecular mechanisms involved. RESEARCH DESIGN AND METHODS The INS gene was sequenced in 16 French probands with unexplained MODY, 95 patients with nonautoimmune early-onset diabetes (diagnosed at <35 years) and 292 normoglycemic control subjects of French origin. Three identified insulin mutants were generated by site-directed mutagenesis of cDNA encoding a preproinsulin–green fluorescent protein (GFP) (C-peptide) chimera. Intracellular targeting was assessed in clonal β-cells by immunocytochemistry and proinsulin secretion, by radioimmunoassay. Spliced XBP1 and C/EBP homologous protein were quantitated by real-time PCR. RESULTS A novel coding mutation, L30M, potentially affecting insulin multimerization, was identified in five diabetic individuals (diabetes onset 17–36 years) in a single family. L30M preproinsulin-GFP fluorescence largely associated with the endoplasmic reticulum (ER) in MIN6 β-cells, and ER exit was inhibited by ∼50%. Two additional mutants, R55C (at the B/C junction) and R6H (in the signal peptide), were normally targeted to secretory granules, but nonetheless caused substantial ER stress. CONCLUSIONS We describe three INS mutations cosegregating with early-onset diabetes whose clinical presentation is compatible with MODY. These led to the production of (pre)proinsulin molecules with markedly different trafficking properties and effects on ER stress, demonstrating a range of molecular defects in the β-cell.


Journal of Biological Chemistry | 2011

Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c.-331 INS Mutation Found in Neonatal Diabetes Mellitus

Amélie Bonnefond; Gwen Lomberk; Navtej Buttar; Kanetee Busiah; Emmanuel Vaillant; Stéphane Lobbens; Loic Yengo; Aurélie Dechaume; Brigitte Mignot; Albane Simon; Raphael Scharfmann; Bernadette Neve; Sinan Tanyolaç; Uğur Hodoğlugil; François Pattou; Hélène Cavé; Juan L. Iovanna; Roland Stein; Michel Polak; Martine Vaxillaire; Philippe Froguel; Raul Urrutia

Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11−/− mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus.


JAMA | 2011

Association of Prenatal and Postnatal Exposure to Lopinavir-Ritonavir and Adrenal Dysfunction Among Uninfected Infants of HIV-Infected Mothers

Albane Simon; Josiane Warszawski; Dulanjalee Kariyawasam; Valérie Benhammou; Paul Czernichow; Frantz Foissac; Kathleen Laborde; Ghislaine Firtion; Inès Layouni; Martine Munzer; Michel Polak

CONTEXT Lopinavir-ritonavir is a human immunodeficiency virus 1 (HIV-1) protease inhibitor boosted by ritonavir, a cytochrome p450 inhibitor. A warning about its tolerance in premature newborns was recently released, and transient elevation of 17-hydroxyprogesterone (17OHP) was noted in 2 newborns treated with lopinavir-ritonavir in France. OBJECTIVE To evaluate adrenal function in newborns postnatally treated with lopinavir-ritonavir. DESIGN, SETTING, AND PARTICIPANTS Retrospective cross-sectional analysis of the database from the national screening for congenital adrenal hyperplasia (CAH) and the French Perinatal Cohort. Comparison of HIV-1-uninfected newborns postnatally treated with lopinavir-ritonavir and controls treated with standard zidovudine. MAIN OUTCOME MEASURES Plasma 17OHP and dehydroepiandrosterone-sulfate (DHEA-S) concentrations during the first week of treatment. Clinical and biological symptoms compatible with adrenal deficiency. RESULTS Of 50 HIV-1-uninfected newborns who received lopinavir-ritonavir at birth for a median of 30 days (interquartile range [IQR], 25-33), 7 (14%) had elevated 17OHP levels greater than 16.5 ng/mL for term infants (>23.1 ng/mL for preterm) on days 1 to 6 vs 0 of 108 controls having elevated levels. The median 17OHP concentration for 42 term newborns treated with lopinavir-ritonavir was 9.9 ng/mL (IQR, 3.9-14.1 ng/mL) vs 3.7 ng/mL (IQR, 2.6-5.3 ng/mL) for 93 term controls (P < .001). The difference observed in median 17OHP values between treated newborns and controls was higher in children also exposed in utero (11.5 ng/mL vs 3.7 ng/mL; P < .001) than not exposed in utero (6.9 ng/mL vs 3.3 ng/mL; P = .03). The median DHEA-S concentration among 18 term newborns treated with lopinavir-ritonavir was 9242 ng/mL (IQR, 1347-25,986 ng/mL) compared with 484 ng/mL (IQR, 218-1308 ng/mL) among 17 term controls (P < .001). The 17OHP and DHEA-S concentrations were positively correlated (r = 0.53; P = .001). All term newborns treated with lopinavir-ritonavir were asymptomatic, although 3 premature newborns experienced life-threatening symptoms compatible with adrenal insufficiency, including hyponatremia and hyperkalemia with, in 1 case, cardiogenic shock. All symptoms resolved following completion of the lopinavir-ritonavir treatment. CONCLUSION Among newborn children of HIV-1-infected mothers exposed in utero to lopinavir-ritonavir, postnatal treatment with a lopinavir-ritonavir-based regimen, compared with a zidovudine-based regimen, was associated with transient adrenal dysfunction.


The Lancet Diabetes & Endocrinology | 2013

Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study

Kanetee Busiah; Séverine Drunat; Laurence Vaivre-Douret; Amélie Bonnefond; Albane Simon; Isabelle Flechtner; Bénédicte Gérard; Nathalie Pouvreau; Caroline Elie; Revital Nimri; Liat de Vries; Nadia Tubiana-Rufi; Chantal Metz; Anne-Marie Bertrand; Sylvie Nivot-Adamiak; Marc de Kerdanet; Chantal Stuckens; Farida Jennane; Pierre-François Souchon; Claire Le Tallec; Christelle Désirée; Sabrina Pereira; Aurélie Dechaume; Jean-Jacques Robert; Moshe Phillip; Raphael Scharfmann; Paul Czernichow; Philippe Froguel; Martine Vaxillaire; Michel Polak

BACKGROUND Neonatal diabetes mellitus is a rare genetic form of pancreatic β-cell dysfunction. We compared phenotypic features and clinical outcomes according to genetic subtypes in a cohort of patients diagnosed with neonatal diabetes mellitus before age 1 year, without β-cell autoimmunity and with normal pancreas morphology. METHODS We prospectively investigated patients from 20 countries referred to the French Neonatal Diabetes Mellitus Study Group from 1995 to 2010. Patients with hyperglycaemia requiring treatment with insulin before age 1 year were eligible, provided that they had normal pancreatic morphology as assessed by ultrasonography and negative tests for β-cell autoimmunity. We assessed changes in the 6q24 locus, KATP-channel subunit genes (ABCC8 and KCNJ11), and preproinsulin gene (INS) and investigated associations between genotype and phenotype, with special attention to extra-pancreatic abnormalities. FINDINGS We tested 174 index patients, of whom 47 (27%) had no detectable genetic defect. Of the remaining 127 index patients, 40 (31%) had 6q24 abnormalities, 43 (34%) had mutations in KCNJ11, 31 (24%) had mutations in ABCC8, and 13 (10%) had mutations in INS. We reported developmental delay with or without epilepsy in 13 index patients (18% of participants with mutations in genes encoding KATP channel subunits). In-depth neuropsychomotor investigations were done at median age 7 years (IQR 1-15) in 27 index patients with mutations in KATP channel subunit genes who did not have developmental delay or epilepsy. Developmental coordination disorder (particularly visual-spatial dyspraxia) or attention deficits were recorded in all index patients who had this testing. Compared with index patients who had mutations in KATP channel subunit genes, those with 6q24 abnormalities had specific features: developmental defects involving the heart, kidneys, or urinary tract (8/36 [22%] vs 2/71 [3%]; p=0·002), intrauterine growth restriction (34/37 [92%] vs 34/70 [48%]; p<0·0001), and early diagnosis (median age 5·0 days, IQR 1·0-14·5 vs 45·5 days, IQR 27·2-95·0; p<0·0001). Remission of neonatal diabetes mellitus occurred in 89 (51%) index patients at a median age of 17 weeks (IQR 9·5-39·0; median follow-up 4·7 years, IQR 1·5-12·8). Recurrence was common, with no difference between the groups who had 6q24 abnormalities versus mutations in KATP channel subunit genes (82% vs 86%; p=0·36). INTERPRETATION Neonatal diabetes mellitus is often associated with neuropsychological dysfunction and developmental defects that are specific to the underlying genetic abnormality. A multidisciplinary assessment is therefore essential when patients are diagnosed. Features of neuropsychological dysfunction and developmental defects should be tested for in adults with a history of neonatal diabetes mellitus. FUNDING Agence Nationale de la Recherche-Maladies Rares Research Program Grant, the Transnational European Research Grant on Rare Diseases, the Société Francophone du Diabète-Association Française du Diabète, the Association Française du Diabète, Aide aux Jeunes Diabétiques, a CIFRE grant from the French Government, HRA-Pharma, the French Ministry of Education and Research, and the Société Française de Pédiatrie.


Diabetes Care | 2015

Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations

Jacques Beltrand; Caroline Elie; Kanetee Busiah; Emmanuel Fournier; Nathalie Boddaert; Nadia Bahi-Buisson; Miriam Vera; Emmanuel Bui-Quoc; Isabelle Ingster-Moati; Marianne Berdugo; Albane Simon; Claire Gozalo; Zoubir Djerada; Isabelle Flechtner; Jean-Marc Tréluyer; Raphael Scharfmann; Hélène Cavé; Laurence Vaivre-Douret; Michel Polak

OBJECTIVE Neonatal diabetes secondary to mutations in potassium-channel subunits is a rare disease but constitutes a paradigm for personalized genetics-based medicine, as replacing the historical treatment with insulin injections with oral sulfonylurea (SU) therapy has been proven beneficial. SU receptors are widely expressed in the brain, and we therefore evaluated potential effects of SU on neurodevelopmental parameters, which are known to be unresponsive to insulin. RESEARCH DESIGN AND METHODS We conducted a prospective single-center study. Nineteen patients (15 boys aged 0.1–18.5 years) were switched from insulin to SU therapy. MRI was performed at baseline. Before and 6 or 12 months after the switch, patients underwent quantitative neurological and developmental assessments and electrophysiological nerve and muscle testing. RESULTS At baseline, hypotonia, deficiencies in gesture conception or realization, and attention disorders were common. SU improved HbA1c levels (median change −1.55% [range −3.8 to 0.1]; P < 0.0001), intelligence scores, hypotonia (in 12 of 15 patients), visual attention deficits (in 10 of 13 patients), gross and fine motor skills (in all patients younger than 4 years old), and gesture conception and realization (in 5 of 8 older patients). Electrophysiological muscle and nerve tests were normal. Cerebral MRI at baseline showed lesions in 12 patients, suggesting that the impairments were central in origin. CONCLUSIONS SU therapy in neonatal diabetes secondary to mutations in potassium-channel subunits produces measurable improvements in neuropsychomotor impairments, which are greater in younger patients. An early genetic diagnosis should always be made, allowing for a rapid switch to SU.


Diabetes & Metabolism | 2009

Mutations in the ABCC8 gene can cause autoantibody-negative insulin-dependent diabetes.

Agnès Hartemann-Heurtier; Albane Simon; Christine Bellanné-Chantelot; R. Reynaud; Hélène Cavé; Michel Polak; Martine Vaxillaire; A. Grimaldi

Activating mutations in genes KCNJ11 and ABCC8, which form the ATP-sensitive K+channel (K(ATP) channel), have been shown to cause transient or permanent neonatal diabetes. We describe here a rather different phenotype: two cases of adult diabetic patients-considered and treated as insulin-dependent diabetic patients since adolescence-who, in fact, turned out to be heterozygous for an ABCC8 mutation and able to successfully discontinue insulin while taking sulphonylurea treatment.


European Journal of Endocrinology | 2014

Unexpected high frequency of skeletal dysplasia in idiopathic short stature and small for gestational age patients

Isabelle Flechtner; Karen Lambot-Juhan; R Teissier; Ana Colmenares; Geneviève Baujat; Jacques Beltrand; Z Ajaltouni; C Pauwels; Graziella Pinto; D Samara-Boustani; Albane Simon; C Thalassinos; M. Le Merrer; Valérie Cormier-Daire; Michel Polak

OBJECTIVE To assess the prevalence of skeletal dysplasias (SDs) in patients with idiopathic short stature (ISS) or small for gestational age (SGA) status. SETTING Rare Endocrine/Growth Diseases Center in Paris, France. DESIGN A prospective study on consecutive patients with ISS and SGA enrolled from 2004 to 2009. METHOD We used a standardized workup to classify patients into well-established diagnostic categories. Of 713 patients with ISS (n=417) or SGA status (n=296), 50.9% underwent a skeletal survey. We chose patients labeled normal or with a prepubertal slowdown of growth as a comparison group. RESULTS Diagnoses were ISS (16.9%), SGA (13.5%), normal growth (24.5%), transient growth rate slowing (17.3%), endocrine dysfunction (12%), genetic syndrome (8.9%), chronic disease (5.1%), and known SD (1.8%). SD was found in 20.9% of SGA and 21.8% ISS patients and in only 13.2% in our comparison group. SD prevalence was significantly higher in the ISS group than in the comparison group, especially (50%) for patients having at least one parent whose height was <-2 SDS. Dyschondrosteosis and hypochondroplasia were the most frequently identified SD, and genetic anomaly was found in 61.5 and 30% respectively. Subtle SD was found equally in the three groups and require long-term growth follow-up to evaluate the impact on final height. CONCLUSION SD may explain more than 20% of cases of growth retardation ascribed to ISS or SGA, and this proportion is higher when parental height is <-2 SDS. A skeletal survey should be obtained in patients with delayed growth in a context of ISS or SGA.


European Journal of Endocrinology | 2011

Pregnancy in women heterozygous for MCT8 mutations: risk of maternal hypothyroxinemia and fetal care.

Helton Estrela Ramos; Melina Morandini; Aurore Carré; Elodie Tron; Corinne Floch; Laurent Mandelbrot; Nathalie Neri; Benoit De Sarcus; Albane Simon; Jean Paul Bonnefont; Jeanne Amiel; Isabelle Desguerre; Vassili Valayannopoulos; Mireille Castanet; Michel Polak

CONTEXT Monocarboxylate transporter 8 (MCT8 or SLC16A2) mutations cause X-linked Allan-Herndon-Dudley syndrome. Heterozygous females are usually asymptomatic, but pregnancy may modify thyroid function and MCT8 is expressed in the placenta, suggesting that maternal and fetal abnormalities might develop even in the absence of MCT8 fetal mutation. Genetic counseling is so far based on X-linked transmission, and prenatal diagnosis is rarely performed. OBJECTIVE To describe thyroid function and the prenatal diagnosis in pregnant mothers harboring heterozygous MCT8 mutations and management of the persistent maternal hypothyroxinemia. Patients Two women heterozygous for MCT8 mutations (c.1690G>A and c.1393-1G>C) were monitored throughout pregnancy. METHODS Prenatal diagnosis included sex determination, direct MCT8 sequencing, and familial linkage analysis. Ultrasonography and hormonal assays for maternal thyroid function evaluation were performed serially during pregnancy. Neonatal thyroid hormonal status was assessed. RESULTS None of the three fetuses (two males and one female) carried MCT8 mutations. One of the two heterozygous mothers revealed gestational hypothyroxinemia, prompting early levothyroxine (l-T₄) therapy until delivery. The second heterozygous mother showed normal thyroid function but was preventively traited by l-T₄ and all of the three neonates had normal thyroid hormone levels and thyroid gland at birth, suggesting advantages of prenatal care and/or compensatory mechanisms. CONCLUSION Heterozygous MCT8 women should be monitored for requirement of l-T₄ therapy to prevent fetal and neonatal hypothyroidism and to avoid risk of potential cognitive delay due to gestational hypothyroxinemia. Moreover, when the disease-causing mutation is known and/or the first child is affected, prenatal diagnosis for male fetuses should be assessed early for MCT8 mutations by direct sequencing.


Hormone Research in Paediatrics | 2012

Postprandial Hyperglycemia Corrected by IGF-I (Increlex®) in Laron Syndrome

Hanane Latrech; Albane Simon; Jacques Beltrand; Jean-Claude Souberbielle; Ghizlane Belmejdoub; Michel Polak

Background: Laron syndrome is caused by a mutation in the growth hormone (GH) receptor and manifests as insulin-like growth factor-I (IGF-I) deficiency, severe short stature, and early hypoglycemia. We report a case with postprandial hyperglycemia, an abnormality not reported previously. Postprandial hyperglycemia was due to chronic IGF-I deficiency, and was reversed by IGF-I replacement therapy. Methods: A Moroccan girl referred for short stature at 7 years and 8 months of age had dwarfism [height, 78 cm (–9 SDs); weight, 10 kg (–4 SDs)], hypoglycemia, and truncal obesity. Her serum IGF-I level was very low, and her baseline serum GH level was elevated to 47 mIU/l. Molecular analysis showed a homozygous mutation in the GH receptor gene. Results: Continuous glucose monitoring before treatment showed asymptomatic hypoglycemia with postprandial hyperglycemia (2.5 g/l, 13.75 mmol/l). Treatment with recombinant human IGF-I (mecasermin, Increlex®) was started. The blood glucose profile improved with 0.04 µg/kg/day and returned to normal with 0.12 µg/kg/day. Conclusion: Postprandial hyperglycemia is a metabolic consequence of chronic IGF-I deficiency. The beneficial effect of IGF-I replacement therapy may be ascribable to improved postprandial transfer of glucose.

Collaboration


Dive into the Albane Simon's collaboration.

Top Co-Authors

Avatar

Michel Polak

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Kanetee Busiah

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Isabelle Flechtner

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Beltrand

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Elie

Necker-Enfants Malades Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge