Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albano C. Meli is active.

Publication


Featured researches published by Albano C. Meli.


Journal of Clinical Investigation | 2010

Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice

Jian Shan; Matthew J. Betzenhauser; Alexander Kushnir; Steven Reiken; Albano C. Meli; Anetta Wronska; Miroslav Dura; Bi-Xing Chen; Andrew R. Marks

Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 2808 (mice are referred to herein as RyR2-S2808D+/+ mice). This mutation mimics constitutive PKA hyperphosphorylation of RyR2, which causes depletion of the stabilizing subunit FKBP12.6 (also known as calstabin2), resulting in leaky RyR2. RyR2-S2808D+/+ mice developed age-dependent cardiomyopathy, elevated RyR2 oxidation and nitrosylation, reduced SR Ca2+ store content, and increased diastolic SR Ca2+ leak. After myocardial infarction, RyR2-S2808D+/+ mice exhibited increased mortality compared with WT littermates. Treatment with S107, a 1,4-benzothiazepine derivative that stabilizes RyR2-calstabin2 interactions, inhibited the RyR2-mediated diastolic SR Ca2+ leak and reduced HF progression in WT and RyR2-S2808D+/+ mice. In contrast, β-adrenergic receptor blockers improved cardiac function in WT but not in RyR2-S2808D+/+ mice.Thus, chronic PKA hyperphosphorylation of RyR2 results in a diastolic leak that causes cardiac dysfunction. Reversing PKA hyperphosphorylation of RyR2 is an important mechanism underlying the therapeutic action of β-blocker therapy in HF.


Cell | 2012

Role of Leaky Neuronal Ryanodine Receptors in Stress-Induced Cognitive Dysfunction

Xiaoping Liu; Matthew J. Betzenhauser; Steve Reiken; Albano C. Meli; Wenjun Xie; Bi-Xing Chen; Ottavio Arancio; Andrew R. Marks

The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion

Jérémy Fauconnier; Albano C. Meli; Jérôme Thireau; Stéphanie Roberge; Jian Shan; Yassine Sassi; Steven Reiken; Jean-Michel Rauzier; Alexandre Marchand; David Chauvier; Cécile Cassan; Christine Crozier; Patrice Bideaux; Anne-Marie Lompré; Etienne Jacotot; Andrew R. Marks; Alain Lacampagne

Myocardial ischemic disease is the major cause of death worldwide. After myocardial infarction, reperfusion of infracted heart has been an important objective of strategies to improve outcomes. However, cardiac ischemia/reperfusion (I/R) is characterized by inflammation, arrhythmias, cardiomyocyte damage, and, at the cellular level, disturbance in Ca2+ and redox homeostasis. In this study, we sought to determine how acute inflammatory response contributes to reperfusion injury and Ca2+ homeostasis disturbance after acute ischemia. Using a rat model of I/R, we show that circulating levels of TNF-α and cardiac caspase-8 activity were increased within 6 h of reperfusion, leading to myocardial nitric oxide and mitochondrial ROS production. At 1 and 15 d after reperfusion, caspase-8 activation resulted in S-nitrosylation of the RyR2 and depletion of calstabin2 from the RyR2 complex, resulting in diastolic sarcoplasmic reticulum (SR) Ca2+ leak. Pharmacological inhibition of caspase-8 before reperfusion with Q-LETD-OPh or prevention of calstabin2 depletion from the RyR2 complex with the Ca2+ channel stabilizer S107 (“rycal”) inhibited the SR Ca2+ leak, reduced ventricular arrhythmias, infarct size, and left ventricular remodeling after 15 d of reperfusion. TNF-α–induced caspase-8 activation leads to leaky RyR2 channels that contribute to myocardial remodeling after I/R. Thus, early prevention of SR Ca2+ leak trough normalization of RyR2 function is cardioprotective.


Journal of Biological Chemistry | 2006

Channel Properties of TpsB Transporter FhaC Point to Two Functional Domains with a C-terminal Protein-conducting Pore

Albano C. Meli; Hélène Hodak; Bernard Clantin; Camille Locht; Gérard Molle; Françoise Jacob-Dubuisson; Nathalie Saint

Integral outer membrane transporters of the Omp85/TpsB superfamily mediate the translocation of proteins across, or their integration into, the outer membranes of Gram-negative bacteria, chloroplasts, and mitochondria. The Bordetella pertussis FhaC/FHA couple serves as a model for the two-partner secretion pathway in Gram-negative bacteria, with the TpsB protein, FhaC, being the specific transporter of its TpsA partner, FHA, across the outer membrane. In this work, we have investigated the structure/function relationship of FhaC by analyzing the ion channel properties of the wild type protein and a collection of mutants with varied FHA secretion activities. We demonstrated that the channel is formed by the C-terminal two-thirds of FhaC most likely folding into a β-barrel domain predicted to be conserved throughout the family. A C-proximal motif that represents the family signature appears essential for pore function. The N-terminal 200 residues of FhaC constitute a functionally distinct domain that modulates the pore properties and may participate in FHA recognition.


Circulation Research | 2011

A Novel Ryanodine Receptor Mutation Linked to Sudden Death Increases Sensitivity to Cytosolic Calcium

Albano C. Meli; Marwan Refaat; Miroslav Dura; Steven Reiken; Anetta Wronska; Julianne Wojciak; Joan Carroll; Melvin M. Scheinman; Andrew R. Marks

Rationale: Mutations in the cardiac type 2 ryanodine receptor (RyR2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT-associated RyR2 mutations cause fatal ventricular arrhythmias in young individuals during &bgr;-adrenergic stimulation. Objective: This study sought to determine the effects of a novel RyR2-G230C mutation and whether this mutation and RyR2-P2328S alter the sensitivity of the channel to luminal calcium (Ca2+). Methods and Results: Functional characterizations of recombinant human RyR2-G230C channels were performed under conditions mimicking stress. Human RyR2 mutant channels were generated by site-directed mutagenesis and heterologously expressed in HEK293 cells together with calstabin2. RyR2 channels were measured to examine the regulation of the channels by cytosolic versus luminal sarcoplasmic reticulum Ca2+. A 50-year-old white man with repeated syncopal episodes after exercise had a cardiac arrest and harbored the mutation RyR2-G230C. cAMP-dependent protein kinase–phosphorylated RyR2-G230C channels exhibited a significantly higher open probability at diastolic Ca2+ concentrations, associated with a depletion of calstabin2. The luminal Ca2+ sensitivities of RyR2-G230C and RyR2-P2328S channels were WT-like. Conclusions: The RyR2-G230C mutant exhibits similar biophysical defects compared with previously characterized CPVT mutations: decreased binding of the stabilizing subunit calstabin2 and a leftward shift in the Ca2+ dependence for activation under conditions that simulate exercise, consistent with a “leaky” channel. Both RyR2-G230C and RyR2-P2328S channels exhibit normal luminal Ca2+ activation. Thus, diastolic sarcoplasmic reticulum Ca2+ leak caused by reduced calstabin2 binding and a leftward shift in the Ca2+ dependence for activation by diastolic levels of cytosolic Ca2+ is a common mechanism underlying CPVT.


Skeletal Muscle | 2012

Leaky ryanodine receptors in β-sarcoglycan deficient mice: a potential common defect in muscular dystrophy

Daniel C. Andersson; Albano C. Meli; Steven Reiken; Matthew J. Betzenhauser; Alisa Umanskaya; Takayuki Shiomi; Jeanine M. D’Armiento; Andrew R. Marks

BackgroundDisruption of the sarcolemma-associated dystrophin-glycoprotein complex underlies multiple forms of muscular dystrophy, including Duchenne muscular dystrophy and sarcoglycanopathies. A hallmark of these disorders is muscle weakness. In a murine model of Duchenne muscular dystrophy, mdx mice, cysteine-nitrosylation of the calcium release channel/ryanodine receptor type 1 (RyR1) on the skeletal muscle sarcoplasmic reticulum causes depletion of the stabilizing subunit calstabin1 (FKBP12) from the RyR1 macromolecular complex. This results in a sarcoplasmic reticular calcium leak via defective RyR1 channels. This pathological intracellular calcium leak contributes to reduced calcium release and decreased muscle force production. It is unknown whether RyR1 dysfunction occurs also in other muscular dystrophies.MethodsTo test this we used a murine model of Limb-Girdle muscular dystrophy, deficient in β-sarcoglycan (Sgcb−/−).ResultsSkeletal muscle RyR1 from Sgcb−/− deficient mice were oxidized, nitrosylated, and depleted of the stabilizing subunit calstabin1, which was associated with increased open probability of the RyR1 channels. Sgcb−/− deficient mice exhibited decreased muscle specific force and calcium transients, and displayed reduced exercise capacity. Treating Sgcb−/− mice with the RyR stabilizing compound S107 improved muscle specific force, calcium transients, and exercise capacity. We have previously reported similar findings in mdx mice, a murine model of Duchenne muscular dystrophy.ConclusionsOur data suggest that leaky RyR1 channels may underlie multiple forms of muscular dystrophy linked to mutations in genes encoding components of the dystrophin-glycoprotein complex. A common underlying abnormality in calcium handling indicates that pharmacological targeting of dysfunctional RyR1 could be a novel therapeutic approach to improve muscle function in Limb-Girdle and Duchenne muscular dystrophies.


BioMed Research International | 2014

Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

Ivana Aćimović; Aleksandra Vilotić; Martin Pešl; Alain Lacampagne; Petr Dvorak; Vladimír Rotrekl; Albano C. Meli

Human pluripotent stem cells (hPSCs), namely, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs).


Cardiovascular Research | 2014

TNF-α-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes

Stéphanie Roberge; Julien Roussel; Daniel C. Andersson; Albano C. Meli; Bastien Vidal; Florence Blandel; Johanna T. Lanner; Jean-Yves Le Guennec; Abram Katz; Håkan Westerblad; Alain Lacampagne; Jérémy Fauconnier

AIMS TRPM2 is a Ca(2+)-permeable cationic channel of the transient receptor potential (TRP) superfamily that is linked to apoptotic signalling. Its involvement in cardiac pathophysiology is unknown. The aim of this study was to determine whether the pro-apoptotic cytokine tumour necrosis factor-α (TNF-α) induces a TRPM2-like current in murine ventricular cardiomyocytes. METHODS AND RESULTS Adult isolated cardiomyocytes from C57BL/6 mice were exposed to TNF-α (10 ng/mL). Western blotting showed TRPM2 expression, which was not changed after TNF-α incubation. Using patch clamp in whole-cell configuration, a non-specific cation current was recorded after exposure to TNF-α (ITNF), which reached maximal steady-state amplitude after 3 h incubation. ITNF was inhibited by the caspase-8 inhibitor z-IETD-fmk, the antioxidant N-acetylcysteine, and the TRPM2 inhibitors clotrimazole, N-(P-amylcinnamoyl) anthranilic acid and flufenamic acid (FFA). TRPM2 has previously been shown to be activated by ADP-ribose, which is produced by poly(ADP-ribose) polymerase 1 (PARP-1). TNF-α exposure resulted in increased poly-ADP-ribosylation of proteins and the PARP-1 inhibitor 3-aminobenzamide inhibited ITNF. TNF-α exposure increased the mitochondrial production of reactive oxygen species (ROS; measured with the fluorescent indicator MitoSOX Red), and this increase was blocked by the caspase-8 inhibitor z-IETD-fmk. Clotrimazole and TRPM2 inhibitory antibody decreased TNF-α-induced cardiomyocyte death. CONCLUSION These results demonstrate that TNF-α induces a TRPM2 current in adult ventricular cardiomyocytes. TNF-α induces caspase-8 activation leading to ROS production, PARP-1 activation, and ADP-ribose production. TNF-induced TRPM2 activation may contribute to cardiomyocyte cell death.


International Journal of Cardiology | 2015

Short-coupled polymorphic ventricular tachycardia at rest linked to a novel ryanodine receptor (RyR2) mutation: Leaky RyR2 channels under non-stress conditions

Jim W. Cheung; Albano C. Meli; Wenjun Xie; Suneet Mittal; Steven Reiken; Anetta Wronska; Linna Xu; Jonathan S. Steinberg; Steven M. Markowitz; Sei Iwai; Alain Lacampagne; Bruce B. Lerman; Andrew R. Marks

BACKGROUND Ryanodine receptor (RyR2) mutations have largely been associated with catecholaminergic polymorphic ventricular tachycardia (PMVT). The role of RyR2 mutations in the pathogenesis of arrhythmias and syncope at rest is unknown. We sought to characterize the clinical and functional characteristics associated with a novel RyR2 mutation found in a mother and daughter with PMVT at rest. METHODS AND RESULTS A 31-year-old female with syncope at rest and recurrent short-coupled premature ventricular contractions (PVCs) initiating PMVT was found to be heterozygous for a novel RyR2-H29D mutation. Her mother, who also had syncope at rest and short-coupled PMVT, was found to harbor the same mutation. Human RyR2-H29D mutant channels were generated using site-directed mutagenesis and heterologously expressed in HEK293 cells together with the stabilizing protein calstabin2 (FKPB12.6). Single channel measurements of RyR2-H29D mutant channels and wild type (WT) RyR2 channels were compared at varying concentrations of cytosolic Ca(2+). Binding affinities of the RyR2-H29D channels and RyR2-WT channels to calstabin2 were compared. Functional characterization of the RyR2-H29D mutant channel revealed significantly higher open probability and opening frequency at diastolic levels of cytosolic Ca(2+) under non-stress conditions without protein kinase A treatment. This was associated with a modest depletion of calstabin2 binding under resting conditions. CONCLUSIONS The RyR2-H29D mutation is associated with a clinical phenotype of short-coupled PMVT at rest. In contrast to catecholaminergic PMVT-associated RyR2 mutations, RyR2-H29D causes a leaky channel at diastolic levels of Ca(2+) under non-stress conditions. Leaky RyR2 may be an under-recognized mechanism for idiopathic PMVT at rest.


Heart and Vessels | 2014

Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells.

Martin Pešl; Ivana Aćimović; Jan Pribyl; Renata Hezova; Aleksandra Vilotić; Jérémy Fauconnier; Jan Vrbsky; Peter Kruzliak; Petr Skládal; Tomáš Kára; Vladimír Rotrekl; Alain Lacampagne; Petr Dvorak; Albano C. Meli

In vitro human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (CMs). Protocols for cardiac differentiation of hESCs and hiPSCs include formation of the three-dimensional cell aggregates called embryoid bodies (EBs). The traditional suspension method for EB formation from clumps of cells results in an EB population heterogeneous in size and shape. In this study we show that forced aggregation of a defined number of single cells on AggreWell plates gives a high number of homogeneous EBs that can be efficiently differentiated into functional CMs by application of defined growth factors in the media. For cardiac differentiation, we used three hESC lines and one hiPSC line. Our contracting EBs and the resulting CMs express cardiac markers, namely myosin heavy chain α and β, cardiac ryanodine receptor/calcium release channel, and cardiac troponin T, shown by real-time polymerase chain reaction and immunocytochemistry. Using Ca2+ imaging and atomic force microscopy, we demonstrate the functionality of RyR2 to release Ca2+ from the sarcoplasmic reticulum as well as reliability in contractile and beating properties of hESC-EBs and hiPSC-EBs upon the stimulation or inhibition of the β-adrenergic pathway.

Collaboration


Dive into the Albano C. Meli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Saint

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge